Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-30

AUTHORS

Nicolas A. Karakatsanis, Ronan Abgral, Maria Giovanna Trivieri, Marc R. Dweck, Philip M. Robson, Claudia Calcagno, Gilles Boeykens, Max L. Senders, Willem J. M. Mulder, Charalampos Tsoumpas, Zahi A. Fayad

ABSTRACT

BackgroundThe standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging.MethodsWe introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD).ResultsIn rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication.ConclusionsKi-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls. More... »

PAGES

1126-1141

References to SciGraph publications

  • 2015-07-07. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography in NATURE COMMUNICATIONS
  • 2015-10-23. Evaluation of attenuation correction in cardiac PET using PET/MR in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2016-08-29. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-11-14. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2018-06-25. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2018-02-21. Technical aspects of cardiac PET/MRI in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2017-12-05. 18F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2017-11-09. Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-02-23. The foundation layer of quantitative cardiac PET/MRI: Attenuation correction. Again in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-03-12. Attenuation correction in cardiac PET: To raise awareness for a problem which is as old as PET/CT in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-05-02. Interpolated average CT for cardiac PET/CT attenuation correction in JOURNAL OF NUCLEAR CARDIOLOGY
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2011-11-08. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-08-23. The value and appropriateness of positron emission tomography: An evolving tale in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2018-01-17. Artifact-free quantitative cardiovascular PET/MR imaging: An impossible dream? in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-06-20. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-09-23. Cardiac PET/MRI enters the clinical arena! Finally‚Ķ in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-07-02. Time to move to PET-MR for cardiovascular imaging in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2016-09-22. Cardiovascular PET/MR imaging: Quo Vadis? in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2018-08-09. Fluoride imaging of atherosclerotic plaques: Moving from macro to microcalcifications? in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-04-22. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008-03-23. Simultaneous PET-MRI: a new approach for functional and morphological imaging in NATURE MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12350-019-01928-0

    DOI

    http://dx.doi.org/10.1007/s12350-019-01928-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1122202093

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31667675


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bone and Bones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carotid Artery Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multimodal Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rabbits", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sodium Fluoride", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Weill Cornell Medical College, Cornell University, 515 E 71st Street, S-120, 10021, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "Department of Radiology, Weill Cornell Medical College, Cornell University, 515 E 71st Street, S-120, 10021, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karakatsanis", 
            "givenName": "Nicolas A.", 
            "id": "sg:person.01016541331.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016541331.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abgral", 
            "givenName": "Ronan", 
            "id": "sg:person.01310147073.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310147073.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trivieri", 
            "givenName": "Maria Giovanna", 
            "id": "sg:person.01330727704.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330727704.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "British Heart Foundation, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "British Heart Foundation, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dweck", 
            "givenName": "Marc R.", 
            "id": "sg:person.01320530175.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320530175.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robson", 
            "givenName": "Philip M.", 
            "id": "sg:person.0701551334.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701551334.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Calcagno", 
            "givenName": "Claudia", 
            "id": "sg:person.01314277735.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314277735.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5650.6", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boeykens", 
            "givenName": "Gilles", 
            "id": "sg:person.013057002014.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057002014.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5650.6", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Senders", 
            "givenName": "Max L.", 
            "id": "sg:person.01102452466.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102452466.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5650.6", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mulder", 
            "givenName": "Willem J. M.", 
            "id": "sg:person.01033463112.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033463112.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK", 
              "id": "http://www.grid.ac/institutes/grid.9909.9", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
                "Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsoumpas", 
            "givenName": "Charalampos", 
            "id": "sg:person.01223444015.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223444015.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fayad", 
            "givenName": "Zahi A.", 
            "id": "sg:person.0772637666.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772637666.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-015-3060-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041845590", 
              "https://doi.org/10.1007/s00259-015-3060-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0083-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021909039", 
              "https://doi.org/10.1007/s12350-015-0083-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3864-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092591298", 
              "https://doi.org/10.1007/s00259-017-3864-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0424-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003456233", 
              "https://doi.org/10.1007/s12350-016-0424-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0671-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001907239", 
              "https://doi.org/10.1007/s12350-016-0671-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3489-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004295780", 
              "https://doi.org/10.1007/s00259-016-3489-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-014-9962-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033399558", 
              "https://doi.org/10.1007/s12350-014-9962-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-017-1163-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100464682", 
              "https://doi.org/10.1007/s12350-017-1163-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3089-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050739103", 
              "https://doi.org/10.1007/s00259-015-3089-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029126994", 
              "https://doi.org/10.1038/ncomms8495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0776-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053283974", 
              "https://doi.org/10.1007/s12350-016-0776-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-018-1325-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105106621", 
              "https://doi.org/10.1007/s12350-018-1325-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1297-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021250910", 
              "https://doi.org/10.1007/s00259-009-1297-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-018-1385-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106078892", 
              "https://doi.org/10.1007/s12350-018-1385-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040299274", 
              "https://doi.org/10.1038/nm1700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1966-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014303461", 
              "https://doi.org/10.1007/s00259-011-1966-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0197-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010708313", 
              "https://doi.org/10.1007/s12350-015-0197-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0451-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007519693", 
              "https://doi.org/10.1007/s12350-016-0451-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0140-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015090164", 
              "https://doi.org/10.1007/s12350-015-0140-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-018-1237-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101145243", 
              "https://doi.org/10.1007/s12350-018-1237-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-017-1121-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095859077", 
              "https://doi.org/10.1007/s12350-017-1121-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0206-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001225845", 
              "https://doi.org/10.1007/s12350-015-0206-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-10-30", 
        "datePublishedReg": "2019-10-30", 
        "description": "BackgroundThe standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging.MethodsWe introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD).ResultsIn rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication.ConclusionsKi-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12350-019-01928-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5141674", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2538827", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1106202", 
            "issn": [
              "1071-3581", 
              "1532-6551"
            ], 
            "name": "Journal of Nuclear Cardiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "bone tissue", 
          "bifurcation wall", 
          "wall region", 
          "MR Dixon", 
          "AC", 
          "bone segmentation", 
          "AC method", 
          "correction method", 
          "vertebral bone", 
          "wall", 
          "attenuation correction method", 
          "air", 
          "AC maps", 
          "ratio", 
          "method", 
          "carotid atherosclerosis disease", 
          "prior indication", 
          "dual-tracer data", 
          "enhancement", 
          "quantification", 
          "bone", 
          "hybrid PET", 
          "maps", 
          "validation", 
          "attenuation correction", 
          "fluoride", 
          "cohort of subjects", 
          "tissue classes", 
          "images", 
          "simultaneous administration", 
          "mean TBR", 
          "limitations", 
          "data", 
          "dual-tracer protocol", 
          "segmentation", 
          "human volunteers", 
          "atherosclerosis disease", 
          "background ratio", 
          "human cohorts", 
          "bifurcation", 
          "PET data", 
          "carotid bifurcation", 
          "carotid wall", 
          "dosage", 
          "adjacent vessels", 
          "vessels", 
          "Ki images", 
          "TBR", 
          "human subjects", 
          "correction", 
          "PET/MR", 
          "cohort", 
          "tissue", 
          "CT", 
          "Ki", 
          "rabbits", 
          "region", 
          "indications", 
          "MR", 
          "bias", 
          "subjects", 
          "lung", 
          "cardiovascular", 
          "MethodsWe", 
          "study", 
          "administration", 
          "volunteers", 
          "disease", 
          "segments", 
          "rate constant Ki", 
          "tomography", 
          "minutes", 
          "scores", 
          "PET", 
          "support", 
          "class", 
          "humans", 
          "target", 
          "Dixon", 
          "protocol", 
          "contrast", 
          "constant Ki"
        ], 
        "name": "Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging", 
        "pagination": "1126-1141", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1122202093"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12350-019-01928-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31667675"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12350-019-01928-0", 
          "https://app.dimensions.ai/details/publication/pub.1122202093"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_823.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12350-019-01928-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-01928-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-01928-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-01928-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-01928-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    385 TRIPLES      21 PREDICATES      144 URIs      114 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12350-019-01928-0 schema:about N0613c81cecfa4b009aaa8694ce80c5fa
    2 N0f6573d2b039414db87ead7876cb2e66
    3 N12ecd4a5fa4f43e197be1b30340e016f
    4 N1df11a1ff49742b89f3f7a32dad84909
    5 N20c4a67183ff41579a5e76f6e2dbdef0
    6 N27c230398e3c41ffb45959c33a1c06f9
    7 N3124d7375c2d4a4fbe1f7c5e4097f6d6
    8 N568c9083ea004f4bbb87952e9b064eeb
    9 N5a5b4b7867d4428d8a0e5730c36a8d8e
    10 N605403e8bb474da78b0cdd4952c466c6
    11 N8d8f22b16a9a467fb6998744fee91b4d
    12 N96fb8b1ca0864576b109add549cc9283
    13 Nda9c9e9bda114e40991c85bcd611c7ef
    14 Ne46da4d2e98c4e009d7d003b4baa9bf2
    15 Nee326990c77b41478b659b3ab5541bc3
    16 anzsrc-for:11
    17 anzsrc-for:1103
    18 schema:author N39143335178c4bf4a923fdf04962c927
    19 schema:citation sg:pub.10.1007/s00259-009-1297-4
    20 sg:pub.10.1007/s00259-011-1966-y
    21 sg:pub.10.1007/s00259-015-3060-3
    22 sg:pub.10.1007/s00259-015-3089-3
    23 sg:pub.10.1007/s00259-016-3489-z
    24 sg:pub.10.1007/s00259-017-3864-4
    25 sg:pub.10.1007/s12350-014-9962-9
    26 sg:pub.10.1007/s12350-015-0083-x
    27 sg:pub.10.1007/s12350-015-0140-5
    28 sg:pub.10.1007/s12350-015-0197-1
    29 sg:pub.10.1007/s12350-015-0206-4
    30 sg:pub.10.1007/s12350-016-0424-4
    31 sg:pub.10.1007/s12350-016-0451-1
    32 sg:pub.10.1007/s12350-016-0671-4
    33 sg:pub.10.1007/s12350-016-0776-9
    34 sg:pub.10.1007/s12350-017-1121-7
    35 sg:pub.10.1007/s12350-017-1163-x
    36 sg:pub.10.1007/s12350-018-1237-4
    37 sg:pub.10.1007/s12350-018-1325-5
    38 sg:pub.10.1007/s12350-018-1385-6
    39 sg:pub.10.1038/ncomms8495
    40 sg:pub.10.1038/nm1700
    41 schema:datePublished 2019-10-30
    42 schema:datePublishedReg 2019-10-30
    43 schema:description BackgroundThe standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging.MethodsWe introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD).ResultsIn rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication.ConclusionsKi-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.
    44 schema:genre article
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N5807f94d09d249f0a321e13ab7cd18b1
    47 Nb88803254b0b43d3b6ea93b35dad3f0c
    48 sg:journal.1106202
    49 schema:keywords AC
    50 AC maps
    51 AC method
    52 CT
    53 Dixon
    54 Ki
    55 Ki images
    56 MR
    57 MR Dixon
    58 MethodsWe
    59 PET
    60 PET data
    61 PET/MR
    62 TBR
    63 adjacent vessels
    64 administration
    65 air
    66 atherosclerosis disease
    67 attenuation correction
    68 attenuation correction method
    69 background ratio
    70 bias
    71 bifurcation
    72 bifurcation wall
    73 bone
    74 bone segmentation
    75 bone tissue
    76 cardiovascular
    77 carotid atherosclerosis disease
    78 carotid bifurcation
    79 carotid wall
    80 class
    81 cohort
    82 cohort of subjects
    83 constant Ki
    84 contrast
    85 correction
    86 correction method
    87 data
    88 disease
    89 dosage
    90 dual-tracer data
    91 dual-tracer protocol
    92 enhancement
    93 fluoride
    94 human cohorts
    95 human subjects
    96 human volunteers
    97 humans
    98 hybrid PET
    99 images
    100 indications
    101 limitations
    102 lung
    103 maps
    104 mean TBR
    105 method
    106 minutes
    107 prior indication
    108 protocol
    109 quantification
    110 rabbits
    111 rate constant Ki
    112 ratio
    113 region
    114 scores
    115 segmentation
    116 segments
    117 simultaneous administration
    118 study
    119 subjects
    120 support
    121 target
    122 tissue
    123 tissue classes
    124 tomography
    125 validation
    126 vertebral bone
    127 vessels
    128 volunteers
    129 wall
    130 wall region
    131 schema:name Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging
    132 schema:pagination 1126-1141
    133 schema:productId N89f5725e62bc4b558ceea31b23651831
    134 N8ef6cd8224d84c26abcfabbd90cb0633
    135 Nfd31800a5b33411192664c8d394dfe81
    136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122202093
    137 https://doi.org/10.1007/s12350-019-01928-0
    138 schema:sdDatePublished 2022-08-04T17:09
    139 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    140 schema:sdPublisher N1235884d94554504ac79709ef5afde78
    141 schema:url https://doi.org/10.1007/s12350-019-01928-0
    142 sgo:license sg:explorer/license/
    143 sgo:sdDataset articles
    144 rdf:type schema:ScholarlyArticle
    145 N0613c81cecfa4b009aaa8694ce80c5fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Middle Aged
    147 rdf:type schema:DefinedTerm
    148 N0f6573d2b039414db87ead7876cb2e66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Sodium Fluoride
    150 rdf:type schema:DefinedTerm
    151 N1235884d94554504ac79709ef5afde78 schema:name Springer Nature - SN SciGraph project
    152 rdf:type schema:Organization
    153 N12ecd4a5fa4f43e197be1b30340e016f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Animals
    155 rdf:type schema:DefinedTerm
    156 N1df11a1ff49742b89f3f7a32dad84909 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Adult
    158 rdf:type schema:DefinedTerm
    159 N20c4a67183ff41579a5e76f6e2dbdef0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Male
    161 rdf:type schema:DefinedTerm
    162 N27c230398e3c41ffb45959c33a1c06f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Radiopharmaceuticals
    164 rdf:type schema:DefinedTerm
    165 N27e5e9ba060642b2bf6c660428ee5630 rdf:first sg:person.01330727704.39
    166 rdf:rest Ne4fb4cdc677c455eb0a39abc6be9a01f
    167 N2896bef662b54fa2a4b46fb281b2c45a rdf:first sg:person.0701551334.41
    168 rdf:rest Nc285c53c624a44409d9c2fcd097e48b3
    169 N3124d7375c2d4a4fbe1f7c5e4097f6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Carotid Artery Diseases
    171 rdf:type schema:DefinedTerm
    172 N39143335178c4bf4a923fdf04962c927 rdf:first sg:person.01016541331.85
    173 rdf:rest N5814e4f6c16d45f281e6e924087a2bf2
    174 N568c9083ea004f4bbb87952e9b064eeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Multimodal Imaging
    176 rdf:type schema:DefinedTerm
    177 N5807f94d09d249f0a321e13ab7cd18b1 schema:issueNumber 4
    178 rdf:type schema:PublicationIssue
    179 N5814e4f6c16d45f281e6e924087a2bf2 rdf:first sg:person.01310147073.34
    180 rdf:rest N27e5e9ba060642b2bf6c660428ee5630
    181 N5a5b4b7867d4428d8a0e5730c36a8d8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Rabbits
    183 rdf:type schema:DefinedTerm
    184 N605403e8bb474da78b0cdd4952c466c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Female
    186 rdf:type schema:DefinedTerm
    187 N62e2b3e73dde459ab994015201824aee rdf:first sg:person.01102452466.57
    188 rdf:rest N8cc022b8c1bd47df9226b45c5b2f11d2
    189 N8669d7351c3341bba9f603a61d83244f rdf:first sg:person.0772637666.38
    190 rdf:rest rdf:nil
    191 N89f5725e62bc4b558ceea31b23651831 schema:name doi
    192 schema:value 10.1007/s12350-019-01928-0
    193 rdf:type schema:PropertyValue
    194 N8cc022b8c1bd47df9226b45c5b2f11d2 rdf:first sg:person.01033463112.27
    195 rdf:rest Nfeefe2372f904f6e9511a5ef14ea4d8c
    196 N8d8f22b16a9a467fb6998744fee91b4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Magnetic Resonance Imaging
    198 rdf:type schema:DefinedTerm
    199 N8ef6cd8224d84c26abcfabbd90cb0633 schema:name pubmed_id
    200 schema:value 31667675
    201 rdf:type schema:PropertyValue
    202 N96fb8b1ca0864576b109add549cc9283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Bone and Bones
    204 rdf:type schema:DefinedTerm
    205 Nb88803254b0b43d3b6ea93b35dad3f0c schema:volumeNumber 27
    206 rdf:type schema:PublicationVolume
    207 Nc285c53c624a44409d9c2fcd097e48b3 rdf:first sg:person.01314277735.22
    208 rdf:rest Nfb2b72e440eb48ac8ad7d0194d8c4292
    209 Nda9c9e9bda114e40991c85bcd611c7ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Fluorodeoxyglucose F18
    211 rdf:type schema:DefinedTerm
    212 Ne46da4d2e98c4e009d7d003b4baa9bf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Humans
    214 rdf:type schema:DefinedTerm
    215 Ne4fb4cdc677c455eb0a39abc6be9a01f rdf:first sg:person.01320530175.66
    216 rdf:rest N2896bef662b54fa2a4b46fb281b2c45a
    217 Nee326990c77b41478b659b3ab5541bc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Positron Emission Tomography Computed Tomography
    219 rdf:type schema:DefinedTerm
    220 Nfb2b72e440eb48ac8ad7d0194d8c4292 rdf:first sg:person.013057002014.58
    221 rdf:rest N62e2b3e73dde459ab994015201824aee
    222 Nfd31800a5b33411192664c8d394dfe81 schema:name dimensions_id
    223 schema:value pub.1122202093
    224 rdf:type schema:PropertyValue
    225 Nfeefe2372f904f6e9511a5ef14ea4d8c rdf:first sg:person.01223444015.79
    226 rdf:rest N8669d7351c3341bba9f603a61d83244f
    227 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Medical and Health Sciences
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Clinical Sciences
    232 rdf:type schema:DefinedTerm
    233 sg:grant.2538827 http://pending.schema.org/fundedItem sg:pub.10.1007/s12350-019-01928-0
    234 rdf:type schema:MonetaryGrant
    235 sg:grant.5141674 http://pending.schema.org/fundedItem sg:pub.10.1007/s12350-019-01928-0
    236 rdf:type schema:MonetaryGrant
    237 sg:journal.1106202 schema:issn 1071-3581
    238 1532-6551
    239 schema:name Journal of Nuclear Cardiology
    240 schema:publisher Springer Nature
    241 rdf:type schema:Periodical
    242 sg:person.01016541331.85 schema:affiliation grid-institutes:grid.5386.8
    243 schema:familyName Karakatsanis
    244 schema:givenName Nicolas A.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016541331.85
    246 rdf:type schema:Person
    247 sg:person.01033463112.27 schema:affiliation grid-institutes:grid.5650.6
    248 schema:familyName Mulder
    249 schema:givenName Willem J. M.
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033463112.27
    251 rdf:type schema:Person
    252 sg:person.01102452466.57 schema:affiliation grid-institutes:grid.5650.6
    253 schema:familyName Senders
    254 schema:givenName Max L.
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102452466.57
    256 rdf:type schema:Person
    257 sg:person.01223444015.79 schema:affiliation grid-institutes:grid.9909.9
    258 schema:familyName Tsoumpas
    259 schema:givenName Charalampos
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223444015.79
    261 rdf:type schema:Person
    262 sg:person.013057002014.58 schema:affiliation grid-institutes:grid.5650.6
    263 schema:familyName Boeykens
    264 schema:givenName Gilles
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057002014.58
    266 rdf:type schema:Person
    267 sg:person.01310147073.34 schema:affiliation grid-institutes:grid.411766.3
    268 schema:familyName Abgral
    269 schema:givenName Ronan
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310147073.34
    271 rdf:type schema:Person
    272 sg:person.01314277735.22 schema:affiliation grid-institutes:grid.59734.3c
    273 schema:familyName Calcagno
    274 schema:givenName Claudia
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314277735.22
    276 rdf:type schema:Person
    277 sg:person.01320530175.66 schema:affiliation grid-institutes:grid.4305.2
    278 schema:familyName Dweck
    279 schema:givenName Marc R.
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320530175.66
    281 rdf:type schema:Person
    282 sg:person.01330727704.39 schema:affiliation grid-institutes:grid.59734.3c
    283 schema:familyName Trivieri
    284 schema:givenName Maria Giovanna
    285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330727704.39
    286 rdf:type schema:Person
    287 sg:person.0701551334.41 schema:affiliation grid-institutes:grid.59734.3c
    288 schema:familyName Robson
    289 schema:givenName Philip M.
    290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701551334.41
    291 rdf:type schema:Person
    292 sg:person.0772637666.38 schema:affiliation grid-institutes:grid.59734.3c
    293 schema:familyName Fayad
    294 schema:givenName Zahi A.
    295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772637666.38
    296 rdf:type schema:Person
    297 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
    298 https://doi.org/10.1007/s00259-009-1297-4
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s00259-011-1966-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014303461
    301 https://doi.org/10.1007/s00259-011-1966-y
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s00259-015-3060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041845590
    304 https://doi.org/10.1007/s00259-015-3060-3
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s00259-015-3089-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050739103
    307 https://doi.org/10.1007/s00259-015-3089-3
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s00259-016-3489-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004295780
    310 https://doi.org/10.1007/s00259-016-3489-z
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00259-017-3864-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092591298
    313 https://doi.org/10.1007/s00259-017-3864-4
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s12350-014-9962-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033399558
    316 https://doi.org/10.1007/s12350-014-9962-9
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s12350-015-0083-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021909039
    319 https://doi.org/10.1007/s12350-015-0083-x
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s12350-015-0140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090164
    322 https://doi.org/10.1007/s12350-015-0140-5
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1007/s12350-015-0197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010708313
    325 https://doi.org/10.1007/s12350-015-0197-1
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1007/s12350-015-0206-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001225845
    328 https://doi.org/10.1007/s12350-015-0206-4
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1007/s12350-016-0424-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003456233
    331 https://doi.org/10.1007/s12350-016-0424-4
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1007/s12350-016-0451-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007519693
    334 https://doi.org/10.1007/s12350-016-0451-1
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1007/s12350-016-0671-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001907239
    337 https://doi.org/10.1007/s12350-016-0671-4
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1007/s12350-016-0776-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053283974
    340 https://doi.org/10.1007/s12350-016-0776-9
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1007/s12350-017-1121-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095859077
    343 https://doi.org/10.1007/s12350-017-1121-7
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1007/s12350-017-1163-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100464682
    346 https://doi.org/10.1007/s12350-017-1163-x
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1007/s12350-018-1237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101145243
    349 https://doi.org/10.1007/s12350-018-1237-4
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1007/s12350-018-1325-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105106621
    352 https://doi.org/10.1007/s12350-018-1325-5
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1007/s12350-018-1385-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106078892
    355 https://doi.org/10.1007/s12350-018-1385-6
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1038/ncomms8495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029126994
    358 https://doi.org/10.1038/ncomms8495
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1038/nm1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040299274
    361 https://doi.org/10.1038/nm1700
    362 rdf:type schema:CreativeWork
    363 grid-institutes:grid.411766.3 schema:alternateName Department of Nuclear Medicine, University Hospital of Brest, Brest, France
    364 schema:name Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    365 Department of Nuclear Medicine, University Hospital of Brest, Brest, France
    366 rdf:type schema:Organization
    367 grid-institutes:grid.4305.2 schema:alternateName British Heart Foundation, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
    368 schema:name Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    369 British Heart Foundation, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
    370 rdf:type schema:Organization
    371 grid-institutes:grid.5386.8 schema:alternateName Department of Radiology, Weill Cornell Medical College, Cornell University, 515 E 71st Street, S-120, 10021, New York, NY, USA
    372 schema:name Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    373 Department of Radiology, Weill Cornell Medical College, Cornell University, 515 E 71st Street, S-120, 10021, New York, NY, USA
    374 rdf:type schema:Organization
    375 grid-institutes:grid.5650.6 schema:alternateName Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
    376 schema:name Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    377 Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
    378 rdf:type schema:Organization
    379 grid-institutes:grid.59734.3c schema:alternateName Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    380 schema:name Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    381 rdf:type schema:Organization
    382 grid-institutes:grid.9909.9 schema:alternateName Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
    383 schema:name Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10029, New York, NY, USA
    384 Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
    385 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...