Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Alessia Gimelli, Riccardo Liga, Valerio Duce, Annette Kusch, Alberto Clemente, Paolo Marzullo

ABSTRACT

BACKGROUND: Myocardial perfusion imaging (MPI) performed on traditional single-photon emission computed-tomography cameras has been shown to have a sub-optimal accuracy in detecting multivessel coronary artery disease (CAD). METHODS: Six-hundred and ninety-five patients were submitted to MPI on a novel cadmium-zinc-telluride (CZT) camera and coronary angiography. A coronary stenosis >70% was considered obstructive. In every patient, the summed stress score (SSS) was computed. Moreover, the regional stress scores were also calculated for every coronary territory. RESULTS: Four-hundred and forty-one patients had obstructive CAD in one (28%), two (19%), or three (17%) vessels. At per-patient analysis, the SSS showed a significant accuracy in detecting obstructive CAD (AUC 0.87, P < .001). Specifically, its accuracy was maintained also in patients with double (AUC 0.83; P < .001) or triple-vessels disease (AUC 0.79, P < .001), where CZT was able to correctly identify CAD extent in 64% of patients. On a per-vessel basis, CZT confirmed its high accuracy in detecting obstructive CAD (AUC 0.88, P < .001), independently from the involved coronary vessel. CONCLUSIONS: MPI performed on a CZT camera is highly accurate in detecting obstructive CAD, independently from the coronary artery involved and the overall disease burden. More... »

PAGES

687-695

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12350-015-0360-8

DOI

http://dx.doi.org/10.1007/s12350-015-0360-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043235675

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26846367


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadmium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tellurium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zinc", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fondazione Toscana Gabriele Monasterio", 
          "id": "https://www.grid.ac/institutes/grid.452599.6", 
          "name": [
            "Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gimelli", 
        "givenName": "Alessia", 
        "id": "sg:person.01143542411.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliera Universitaria Pisana", 
          "id": "https://www.grid.ac/institutes/grid.144189.1", 
          "name": [
            "Cardio-thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liga", 
        "givenName": "Riccardo", 
        "id": "sg:person.01214120740.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Azienda Ospedaliera Universitaria Pisana", 
          "id": "https://www.grid.ac/institutes/grid.144189.1", 
          "name": [
            "Cardio-thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duce", 
        "givenName": "Valerio", 
        "id": "sg:person.01042427044.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042427044.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fondazione Toscana Gabriele Monasterio", 
          "id": "https://www.grid.ac/institutes/grid.452599.6", 
          "name": [
            "Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kusch", 
        "givenName": "Annette", 
        "id": "sg:person.0717433724.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717433724.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fondazione Toscana Gabriele Monasterio", 
          "id": "https://www.grid.ac/institutes/grid.452599.6", 
          "name": [
            "Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clemente", 
        "givenName": "Alberto", 
        "id": "sg:person.01147512527.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147512527.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Fisiologia Clinica", 
          "id": "https://www.grid.ac/institutes/grid.418529.3", 
          "name": [
            "Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy", 
            "CNR, Institute of Clinical Physiology, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marzullo", 
        "givenName": "Paolo", 
        "id": "sg:person.01067622763.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067622763.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/eurheartj/eht296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003024186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(00)70009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003812148", 
          "https://doi.org/10.1016/s1071-3581(00)70009-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199406233302503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003836878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(00)00825-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011349887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(96)00052-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015188814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3129-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016623768", 
          "https://doi.org/10.1007/s00259-015-3129-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9172-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018389515", 
          "https://doi.org/10.1007/s12350-009-9172-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9172-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018389515", 
          "https://doi.org/10.1007/s12350-009-9172-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1779-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411656", 
          "https://doi.org/10.1007/s00259-005-1779-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1779-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411656", 
          "https://doi.org/10.1007/s00259-005-1779-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.957399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020586362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.957399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020586362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.957399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020586362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2010.217281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020592941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1067/mnc.2000.107426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021399646", 
          "https://doi.org/10.1067/mnc.2000.107426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-015-0101-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022453088", 
          "https://doi.org/10.1007/s12350-015-0101-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jeu037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023228325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2009.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025705408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8703(00)90230-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026190211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.107417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026861627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.114.002179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033786724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.114.002179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033786724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2505-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034412711", 
          "https://doi.org/10.1007/s00259-013-2505-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034514206", 
          "https://doi.org/10.1007/s00259-015-3008-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1855-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034542479", 
          "https://doi.org/10.1007/s00259-011-1855-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1918-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034700602", 
          "https://doi.org/10.1007/s00259-011-1918-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.091009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035173871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra061889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036222524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jeu166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039618115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0402.102975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.055954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047287141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1375-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051507500", 
          "https://doi.org/10.1007/s00259-009-1375-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1375-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051507500", 
          "https://doi.org/10.1007/s00259-009-1375-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076593580", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "BACKGROUND: Myocardial perfusion imaging (MPI) performed on traditional single-photon emission computed-tomography cameras has been shown to have a sub-optimal accuracy in detecting multivessel coronary artery disease (CAD).\nMETHODS: Six-hundred and ninety-five patients were submitted to MPI on a novel cadmium-zinc-telluride (CZT) camera and coronary angiography. A coronary stenosis >70% was considered obstructive. In every patient, the summed stress score (SSS) was computed. Moreover, the regional stress scores were also calculated for every coronary territory.\nRESULTS: Four-hundred and forty-one patients had obstructive CAD in one (28%), two (19%), or three (17%) vessels. At per-patient analysis, the SSS showed a significant accuracy in detecting obstructive CAD (AUC 0.87, P\u00a0<\u00a0.001). Specifically, its accuracy was maintained also in patients with double (AUC 0.83; P\u00a0<\u00a0.001) or triple-vessels disease (AUC 0.79, P\u00a0<\u00a0.001), where CZT was able to correctly identify CAD extent in 64% of patients. On a per-vessel basis, CZT confirmed its high accuracy in detecting obstructive CAD (AUC 0.88, P\u00a0<\u00a0.001), independently from the involved coronary vessel.\nCONCLUSIONS: MPI performed on a CZT camera is highly accurate in detecting obstructive CAD, independently from the coronary artery involved and the overall disease burden.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12350-015-0360-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1106202", 
        "issn": [
          "1071-3581", 
          "1532-6551"
        ], 
        "name": "Journal of Nuclear Cardiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study", 
    "pagination": "687-695", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdf252af873d16c05188e951bc5f026001f2462df2c16b3381e613e10ec017ef"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26846367"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9423534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12350-015-0360-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043235675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12350-015-0360-8", 
      "https://app.dimensions.ai/details/publication/pub.1043235675"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12350-015-0360-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0360-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0360-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0360-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0360-8'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      72 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12350-015-0360-8 schema:about N06a1eda0161e4da6850eea7cb420bfb6
2 N1932c62c13534820892e66f7c87d8a5d
3 N1e54af6ff19d4c019d83ca7b35c55357
4 N4a2dce2b0fac4324a3acb520a9a1adaf
5 N53f1732b09384c9f9c0efaa83d6db586
6 N5fed1ecd01484ffaa4e096bf5dc62b62
7 N617b6a6515754eabbba5dc413f2f1a95
8 N717dcab9e9ae4a03859522cddeea013a
9 N7e8b12ffe70444cbb22d91765478857e
10 N88dc49e6d4d249eca108dd07079e4fb3
11 Na13fb62c07c5429c8476784bb73eb98c
12 Nb43331bc01e84bc68da568f48716077e
13 Nc4dc21e15e494ee28536376c17285c91
14 Nf09c9c645bc543d9bf9f3d00f06c3443
15 Nf603d676ca40438eb54f499f2f13c967
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author Nea7683e5de5f46c289222c40d2ecff6d
19 schema:citation sg:pub.10.1007/s00259-005-1779-y
20 sg:pub.10.1007/s00259-009-1375-7
21 sg:pub.10.1007/s00259-011-1855-4
22 sg:pub.10.1007/s00259-011-1918-6
23 sg:pub.10.1007/s00259-013-2505-9
24 sg:pub.10.1007/s00259-015-3008-7
25 sg:pub.10.1007/s00259-015-3129-z
26 sg:pub.10.1007/s12350-009-9172-z
27 sg:pub.10.1007/s12350-015-0101-z
28 sg:pub.10.1016/s1071-3581(00)70009-2
29 sg:pub.10.1067/mnc.2000.107426
30 https://app.dimensions.ai/details/publication/pub.1076593580
31 https://doi.org/10.1016/0735-1097(96)00052-6
32 https://doi.org/10.1016/j.jcmg.2009.06.004
33 https://doi.org/10.1016/s0002-8703(00)90230-8
34 https://doi.org/10.1016/s0735-1097(00)00825-1
35 https://doi.org/10.1056/nejm199406233302503
36 https://doi.org/10.1056/nejmra061889
37 https://doi.org/10.1093/ehjci/jeu037
38 https://doi.org/10.1093/ehjci/jeu166
39 https://doi.org/10.1093/eurheartj/eht296
40 https://doi.org/10.1136/hrt.2010.217281
41 https://doi.org/10.1161/circimaging.110.957399
42 https://doi.org/10.1161/circimaging.114.002179
43 https://doi.org/10.1161/hc0402.102975
44 https://doi.org/10.2967/jnumed.108.055954
45 https://doi.org/10.2967/jnumed.111.091009
46 https://doi.org/10.2967/jnumed.112.107417
47 schema:datePublished 2017-04
48 schema:datePublishedReg 2017-04-01
49 schema:description BACKGROUND: Myocardial perfusion imaging (MPI) performed on traditional single-photon emission computed-tomography cameras has been shown to have a sub-optimal accuracy in detecting multivessel coronary artery disease (CAD). METHODS: Six-hundred and ninety-five patients were submitted to MPI on a novel cadmium-zinc-telluride (CZT) camera and coronary angiography. A coronary stenosis >70% was considered obstructive. In every patient, the summed stress score (SSS) was computed. Moreover, the regional stress scores were also calculated for every coronary territory. RESULTS: Four-hundred and forty-one patients had obstructive CAD in one (28%), two (19%), or three (17%) vessels. At per-patient analysis, the SSS showed a significant accuracy in detecting obstructive CAD (AUC 0.87, P < .001). Specifically, its accuracy was maintained also in patients with double (AUC 0.83; P < .001) or triple-vessels disease (AUC 0.79, P < .001), where CZT was able to correctly identify CAD extent in 64% of patients. On a per-vessel basis, CZT confirmed its high accuracy in detecting obstructive CAD (AUC 0.88, P < .001), independently from the involved coronary vessel. CONCLUSIONS: MPI performed on a CZT camera is highly accurate in detecting obstructive CAD, independently from the coronary artery involved and the overall disease burden.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N2386d1db3d6d47daa296e389b6c7ad5d
54 Nf3947350af744f1da402cac08ff37971
55 sg:journal.1106202
56 schema:name Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study
57 schema:pagination 687-695
58 schema:productId N8ffd62dacdad4901906a16faf3c9f254
59 N93236ecf9b3947e18a61ab059e725609
60 Naaa0905d81f743c8ae7450279b629170
61 Nc904572158d143d5ab4b877640d6344b
62 Ndecd08e6897a4b618ddcf27fac117e57
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043235675
64 https://doi.org/10.1007/s12350-015-0360-8
65 schema:sdDatePublished 2019-04-10T14:19
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N613a15e32aee4652850d3cc3d9c41d51
68 schema:url http://link.springer.com/10.1007%2Fs12350-015-0360-8
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N06a1eda0161e4da6850eea7cb420bfb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Image Interpretation, Computer-Assisted
74 rdf:type schema:DefinedTerm
75 N1932c62c13534820892e66f7c87d8a5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Aged
77 rdf:type schema:DefinedTerm
78 N1e54af6ff19d4c019d83ca7b35c55357 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Radionuclide Imaging
80 rdf:type schema:DefinedTerm
81 N2386d1db3d6d47daa296e389b6c7ad5d schema:issueNumber 2
82 rdf:type schema:PublicationIssue
83 N48f2728422474ad2946f5f2dea3d62e0 rdf:first sg:person.01042427044.36
84 rdf:rest N6f38334554b04d699aee926bd1b2c1c5
85 N4a2dce2b0fac4324a3acb520a9a1adaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Sensitivity and Specificity
87 rdf:type schema:DefinedTerm
88 N53f1732b09384c9f9c0efaa83d6db586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Cadmium
90 rdf:type schema:DefinedTerm
91 N5fed1ecd01484ffaa4e096bf5dc62b62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Tellurium
93 rdf:type schema:DefinedTerm
94 N613a15e32aee4652850d3cc3d9c41d51 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N617b6a6515754eabbba5dc413f2f1a95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Coronary Artery Disease
98 rdf:type schema:DefinedTerm
99 N6f38334554b04d699aee926bd1b2c1c5 rdf:first sg:person.0717433724.50
100 rdf:rest Nb8ff297797cf43c7bcbc0fd92ea449fc
101 N717dcab9e9ae4a03859522cddeea013a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Image Enhancement
103 rdf:type schema:DefinedTerm
104 N77f6997fd9304b89b3653d391ccb7f19 rdf:first sg:person.01067622763.33
105 rdf:rest rdf:nil
106 N7e8b12ffe70444cbb22d91765478857e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Tomography, Emission-Computed, Single-Photon
108 rdf:type schema:DefinedTerm
109 N88dc49e6d4d249eca108dd07079e4fb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Male
111 rdf:type schema:DefinedTerm
112 N8ffd62dacdad4901906a16faf3c9f254 schema:name pubmed_id
113 schema:value 26846367
114 rdf:type schema:PropertyValue
115 N93236ecf9b3947e18a61ab059e725609 schema:name nlm_unique_id
116 schema:value 9423534
117 rdf:type schema:PropertyValue
118 Na13fb62c07c5429c8476784bb73eb98c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Reproducibility of Results
120 rdf:type schema:DefinedTerm
121 Naaa0905d81f743c8ae7450279b629170 schema:name doi
122 schema:value 10.1007/s12350-015-0360-8
123 rdf:type schema:PropertyValue
124 Nb43331bc01e84bc68da568f48716077e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 Nb8ff297797cf43c7bcbc0fd92ea449fc rdf:first sg:person.01147512527.73
128 rdf:rest N77f6997fd9304b89b3653d391ccb7f19
129 Nc4dc21e15e494ee28536376c17285c91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Myocardial Perfusion Imaging
131 rdf:type schema:DefinedTerm
132 Nc904572158d143d5ab4b877640d6344b schema:name dimensions_id
133 schema:value pub.1043235675
134 rdf:type schema:PropertyValue
135 Ndecd08e6897a4b618ddcf27fac117e57 schema:name readcube_id
136 schema:value cdf252af873d16c05188e951bc5f026001f2462df2c16b3381e613e10ec017ef
137 rdf:type schema:PropertyValue
138 Nea7683e5de5f46c289222c40d2ecff6d rdf:first sg:person.01143542411.58
139 rdf:rest Nf3d9a6fff0174617830552bf5a15a715
140 Nf09c9c645bc543d9bf9f3d00f06c3443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Female
142 rdf:type schema:DefinedTerm
143 Nf3947350af744f1da402cac08ff37971 schema:volumeNumber 24
144 rdf:type schema:PublicationVolume
145 Nf3d9a6fff0174617830552bf5a15a715 rdf:first sg:person.01214120740.79
146 rdf:rest N48f2728422474ad2946f5f2dea3d62e0
147 Nf603d676ca40438eb54f499f2f13c967 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Zinc
149 rdf:type schema:DefinedTerm
150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
151 schema:name Medical and Health Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
154 schema:name Cardiorespiratory Medicine and Haematology
155 rdf:type schema:DefinedTerm
156 sg:journal.1106202 schema:issn 1071-3581
157 1532-6551
158 schema:name Journal of Nuclear Cardiology
159 rdf:type schema:Periodical
160 sg:person.01042427044.36 schema:affiliation https://www.grid.ac/institutes/grid.144189.1
161 schema:familyName Duce
162 schema:givenName Valerio
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042427044.36
164 rdf:type schema:Person
165 sg:person.01067622763.33 schema:affiliation https://www.grid.ac/institutes/grid.418529.3
166 schema:familyName Marzullo
167 schema:givenName Paolo
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067622763.33
169 rdf:type schema:Person
170 sg:person.01143542411.58 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
171 schema:familyName Gimelli
172 schema:givenName Alessia
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58
174 rdf:type schema:Person
175 sg:person.01147512527.73 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
176 schema:familyName Clemente
177 schema:givenName Alberto
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147512527.73
179 rdf:type schema:Person
180 sg:person.01214120740.79 schema:affiliation https://www.grid.ac/institutes/grid.144189.1
181 schema:familyName Liga
182 schema:givenName Riccardo
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79
184 rdf:type schema:Person
185 sg:person.0717433724.50 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
186 schema:familyName Kusch
187 schema:givenName Annette
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717433724.50
189 rdf:type schema:Person
190 sg:pub.10.1007/s00259-005-1779-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411656
191 https://doi.org/10.1007/s00259-005-1779-y
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s00259-009-1375-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051507500
194 https://doi.org/10.1007/s00259-009-1375-7
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00259-011-1855-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034542479
197 https://doi.org/10.1007/s00259-011-1855-4
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00259-011-1918-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034700602
200 https://doi.org/10.1007/s00259-011-1918-6
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00259-013-2505-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034412711
203 https://doi.org/10.1007/s00259-013-2505-9
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00259-015-3008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034514206
206 https://doi.org/10.1007/s00259-015-3008-7
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00259-015-3129-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623768
209 https://doi.org/10.1007/s00259-015-3129-z
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s12350-009-9172-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018389515
212 https://doi.org/10.1007/s12350-009-9172-z
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s12350-015-0101-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022453088
215 https://doi.org/10.1007/s12350-015-0101-z
216 rdf:type schema:CreativeWork
217 sg:pub.10.1016/s1071-3581(00)70009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003812148
218 https://doi.org/10.1016/s1071-3581(00)70009-2
219 rdf:type schema:CreativeWork
220 sg:pub.10.1067/mnc.2000.107426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021399646
221 https://doi.org/10.1067/mnc.2000.107426
222 rdf:type schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1076593580 schema:CreativeWork
224 https://doi.org/10.1016/0735-1097(96)00052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015188814
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.jcmg.2009.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025705408
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0002-8703(00)90230-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026190211
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0735-1097(00)00825-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011349887
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1056/nejm199406233302503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003836878
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1056/nejmra061889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036222524
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/ehjci/jeu037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023228325
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/ehjci/jeu166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618115
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/eurheartj/eht296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003024186
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1136/hrt.2010.217281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020592941
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1161/circimaging.110.957399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020586362
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1161/circimaging.114.002179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033786724
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1161/hc0402.102975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853393
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2967/jnumed.108.055954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047287141
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2967/jnumed.111.091009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035173871
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2967/jnumed.112.107417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026861627
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.144189.1 schema:alternateName Azienda Ospedaliera Universitaria Pisana
257 schema:name Cardio-thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.418529.3 schema:alternateName Istituto di Fisiologia Clinica
260 schema:name CNR, Institute of Clinical Physiology, Pisa, Italy
261 Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.452599.6 schema:alternateName Fondazione Toscana Gabriele Monasterio
264 schema:name Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...