Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Alessia Gimelli, Riccardo Liga, Emilio Maria Pasanisi, Mirta Casagranda, Michele Coceani, Paolo Marzullo

ABSTRACT

BACKGROUND: Some specifics of cardiac stress protocols, i.e., stressor used or exercise level achieved, may impact myocardial perfusion imaging (MPI) accuracy. METHODS: Four-hundred and seventy-five patients were submitted to MPI and coronary angiography. MPI was performed after exercise (303 patients) or dipyridamole stress (172 patients). A coronary stenosis ≥70% was considered significant. In case of exercise test, a peak heart rate (HR) <85% of the maximal age predicted was considered submaximal and categorized as follows: >75% and <85% ("Group 1"); <75% ("Group 2"). RESULTS: At coronary angiography, 312/475 (66%) patients showed significant stenosis. In the overall population, MPI showed a high accuracy in unmasking significant coronary stenosis, independently of the stress protocol adopted (AUC .76 for exercise vs .78 for vasodilator; P = NS). However, in case of an exercise stress test, a significant interaction between peak %HR and MPI diagnostic power was evident. While an elevated accuracy was still maintained in "Group 1" patients (AUC .79; P vs maximal exercise = NS), a significant drop was demonstrated in "Group 2" patients (AUC .66; P vs maximal exercise = .012, and P vs "Group 1" = .042). CONCLUSIONS: The accuracy of MPI is not influenced by the stress protocol adopted. Exercise MPI maintains an elevated accuracy as long as the %HR remains >75%. More... »

PAGES

1114-1122

References to SciGraph publications

  • 2012-10. 15-Year outcome after normal exercise 99mTc-sestamibi myocardial perfusion imaging: What is the duration of low risk after a normal scan? in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2013-04. A strategy of symptom-limited exercise with regadenoson-as-needed for stress myocardial perfusion imaging: A randomized controlled trial in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2005-07. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2004-09. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: A meta-analysis in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2014-04. Long-term mortality following normal exercise myocardial perfusion SPECT according to coronary disease risk factors in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2013-12. Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-02. Addition of atropine to submaximal exercise stress testing in patients evaluated for suspected ischaemia with SPECT imaging: a randomized, placebo-controlled trial in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-08. Angiographic correlation of myocardial perfusion imaging with half the radiation dose using ordered-subset expectation maximization with resolution recovery software in JOURNAL OF NUCLEAR CARDIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z

    DOI

    http://dx.doi.org/10.1007/s12350-015-0101-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022453088

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25814218


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exercise Test", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Ischemia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Perfusion Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Physical Exertion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed, Single-Photon", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gimelli", 
            "givenName": "Alessia", 
            "id": "sg:person.01143542411.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Azienda Ospedaliera Universitaria Pisana", 
              "id": "https://www.grid.ac/institutes/grid.144189.1", 
              "name": [
                "Cardio-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liga", 
            "givenName": "Riccardo", 
            "id": "sg:person.01214120740.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pasanisi", 
            "givenName": "Emilio Maria", 
            "id": "sg:person.01353237735.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353237735.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Casagranda", 
            "givenName": "Mirta", 
            "id": "sg:person.01251455667.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251455667.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coceani", 
            "givenName": "Michele", 
            "id": "sg:person.01142310434.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142310434.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Fisiologia Clinica", 
              "id": "https://www.grid.ac/institutes/grid.418529.3", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy", 
                "CNR, Institute of Clinical Physiology, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marzullo", 
            "givenName": "Paolo", 
            "id": "sg:person.01067622763.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067622763.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1161/circimaging.112.978270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004649796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.112.978270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004649796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0735-1097(89)90385-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005802478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9149(96)00385-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009960542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-010-1641-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011599592", 
              "https://doi.org/10.1007/s00259-010-1641-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1779-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411656", 
              "https://doi.org/10.1007/s00259-005-1779-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1779-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411656", 
              "https://doi.org/10.1007/s00259-005-1779-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-013-9830-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018981531", 
              "https://doi.org/10.1007/s12350-013-9830-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.58.3.505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019280203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.110.957399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.110.957399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.110.957399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.0000072790.23090.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021729663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-012-9641-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023029089", 
              "https://doi.org/10.1007/s12350-012-9641-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023228325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2004.06.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033645872", 
              "https://doi.org/10.1016/j.nuclcard.2004.06.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2505-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034412711", 
              "https://doi.org/10.1007/s00259-013-2505-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.091009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035173871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.065532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038861017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039618115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9149(89)90278-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044554179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-012-9587-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047139834", 
              "https://doi.org/10.1007/s12350-012-9587-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jacc.2009.04.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050690639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-013-9730-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052192100", 
              "https://doi.org/10.1007/s12350-013-9730-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr/59249210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064569689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077893908", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082771886", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-10", 
        "datePublishedReg": "2016-10-01", 
        "description": "BACKGROUND: Some specifics of cardiac stress protocols, i.e., stressor used or exercise level achieved, may impact myocardial perfusion imaging (MPI) accuracy.\nMETHODS: Four-hundred and seventy-five patients were submitted to MPI and coronary angiography. MPI was performed after exercise (303 patients) or dipyridamole stress (172 patients). A coronary stenosis \u226570% was considered significant. In case of exercise test, a peak heart rate (HR) <85% of the maximal age predicted was considered submaximal and categorized as follows: >75% and <85% (\"Group 1\"); <75% (\"Group 2\").\nRESULTS: At coronary angiography, 312/475 (66%) patients showed significant stenosis. In the overall population, MPI showed a high accuracy in unmasking significant coronary stenosis, independently of the stress protocol adopted (AUC .76 for exercise vs .78 for vasodilator; P\u00a0=\u00a0NS). However, in case of an exercise stress test, a significant interaction between peak %HR and MPI diagnostic power was evident. While an elevated accuracy was still maintained in \"Group 1\" patients (AUC .79; P vs maximal exercise\u00a0=\u00a0NS), a significant drop was demonstrated in \"Group 2\" patients (AUC .66; P vs maximal exercise\u00a0=\u00a0.012, and P vs \"Group 1\"\u00a0=\u00a0.042).\nCONCLUSIONS: The accuracy of MPI is not influenced by the stress protocol adopted. Exercise MPI maintains an elevated accuracy as long as the %HR remains >75%.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12350-015-0101-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1106202", 
            "issn": [
              "1071-3581", 
              "1532-6551"
            ], 
            "name": "Journal of Nuclear Cardiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden", 
        "pagination": "1114-1122", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6af87ae5a65449b056a41ba3e0adda0c64a57dc9925b8c190f48053dc4d8bcae"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25814218"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9423534"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12350-015-0101-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022453088"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12350-015-0101-z", 
          "https://app.dimensions.ai/details/publication/pub.1022453088"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000536.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12350-015-0101-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    230 TRIPLES      21 PREDICATES      63 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12350-015-0101-z schema:about N35f027afe6fa44dfb9c997bed900de85
    2 N44ed60cd73ac4ee5a36b24a1409c3ae5
    3 N45bebcb9c65145cdadfe0991fc91ec03
    4 N5c8dc82b79ab456bb2e44bb73b0ad745
    5 N680f12ef1ee949059e90b8e33be1c24d
    6 N9606bb69bb0c44e1b79cb1ac4bc1c3d2
    7 N96d33a671a6b43b0adb0ff56f8ce602c
    8 N98e4cce1a29e4b6c8439ce5ff4d067e1
    9 Na9d17646bd9d45ee9aecf3a1d0166473
    10 Ndb24bc321773434a9c020040d07c8cc7
    11 Ne34d52a1b2ad4b1fb970f075733bda65
    12 anzsrc-for:11
    13 anzsrc-for:1102
    14 schema:author Naaec797113ba4d25bcb7dc41b6374200
    15 schema:citation sg:pub.10.1007/s00259-005-1779-y
    16 sg:pub.10.1007/s00259-010-1641-8
    17 sg:pub.10.1007/s00259-013-2505-9
    18 sg:pub.10.1007/s12350-012-9587-9
    19 sg:pub.10.1007/s12350-012-9641-7
    20 sg:pub.10.1007/s12350-013-9730-2
    21 sg:pub.10.1007/s12350-013-9830-z
    22 sg:pub.10.1016/j.nuclcard.2004.06.128
    23 https://app.dimensions.ai/details/publication/pub.1077893908
    24 https://app.dimensions.ai/details/publication/pub.1082771886
    25 https://doi.org/10.1016/0002-9149(89)90278-6
    26 https://doi.org/10.1016/0735-1097(89)90385-9
    27 https://doi.org/10.1016/j.jacc.2009.04.042
    28 https://doi.org/10.1016/s0002-9149(96)00385-2
    29 https://doi.org/10.1093/ehjci/jeu037
    30 https://doi.org/10.1093/ehjci/jeu166
    31 https://doi.org/10.1161/01.cir.0000072790.23090.41
    32 https://doi.org/10.1161/01.cir.58.3.505
    33 https://doi.org/10.1161/circimaging.110.957399
    34 https://doi.org/10.1161/circimaging.112.978270
    35 https://doi.org/10.1259/bjr/59249210
    36 https://doi.org/10.2967/jnumed.109.065532
    37 https://doi.org/10.2967/jnumed.111.091009
    38 schema:datePublished 2016-10
    39 schema:datePublishedReg 2016-10-01
    40 schema:description BACKGROUND: Some specifics of cardiac stress protocols, i.e., stressor used or exercise level achieved, may impact myocardial perfusion imaging (MPI) accuracy. METHODS: Four-hundred and seventy-five patients were submitted to MPI and coronary angiography. MPI was performed after exercise (303 patients) or dipyridamole stress (172 patients). A coronary stenosis ≥70% was considered significant. In case of exercise test, a peak heart rate (HR) <85% of the maximal age predicted was considered submaximal and categorized as follows: >75% and <85% ("Group 1"); <75% ("Group 2"). RESULTS: At coronary angiography, 312/475 (66%) patients showed significant stenosis. In the overall population, MPI showed a high accuracy in unmasking significant coronary stenosis, independently of the stress protocol adopted (AUC .76 for exercise vs .78 for vasodilator; P = NS). However, in case of an exercise stress test, a significant interaction between peak %HR and MPI diagnostic power was evident. While an elevated accuracy was still maintained in "Group 1" patients (AUC .79; P vs maximal exercise = NS), a significant drop was demonstrated in "Group 2" patients (AUC .66; P vs maximal exercise = .012, and P vs "Group 1" = .042). CONCLUSIONS: The accuracy of MPI is not influenced by the stress protocol adopted. Exercise MPI maintains an elevated accuracy as long as the %HR remains >75%.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N0127700ea98a4a99bd36561ac0624812
    45 N30fae09f1d424c89bfd90eaa2753f104
    46 sg:journal.1106202
    47 schema:name Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden
    48 schema:pagination 1114-1122
    49 schema:productId N0705cacabe8a450086ca4ef57163c186
    50 N1a376b34d1d748b7a3fc3be9ba196214
    51 N7eb3817ed29540e29453fcd1b9f3e32c
    52 Na5546163c7424add8e3c7d2bb0fdcc03
    53 Nb3b6e466181742738b4fc5a1cbdd6a40
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022453088
    55 https://doi.org/10.1007/s12350-015-0101-z
    56 schema:sdDatePublished 2019-04-10T16:47
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Nd4b5f7574dfb4a39914c488ed65bd1ed
    59 schema:url http://link.springer.com/10.1007%2Fs12350-015-0101-z
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N0127700ea98a4a99bd36561ac0624812 schema:issueNumber 5
    64 rdf:type schema:PublicationIssue
    65 N0705cacabe8a450086ca4ef57163c186 schema:name readcube_id
    66 schema:value 6af87ae5a65449b056a41ba3e0adda0c64a57dc9925b8c190f48053dc4d8bcae
    67 rdf:type schema:PropertyValue
    68 N1a376b34d1d748b7a3fc3be9ba196214 schema:name dimensions_id
    69 schema:value pub.1022453088
    70 rdf:type schema:PropertyValue
    71 N25f0bccfb7cf44e0a75e0262ac43a7ac rdf:first sg:person.01353237735.11
    72 rdf:rest N77a7d1c101e7413297322057c941aa8e
    73 N30fae09f1d424c89bfd90eaa2753f104 schema:volumeNumber 23
    74 rdf:type schema:PublicationVolume
    75 N35f027afe6fa44dfb9c997bed900de85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Reproducibility of Results
    77 rdf:type schema:DefinedTerm
    78 N44ed60cd73ac4ee5a36b24a1409c3ae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Exercise Test
    80 rdf:type schema:DefinedTerm
    81 N45bebcb9c65145cdadfe0991fc91ec03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Myocardial Ischemia
    83 rdf:type schema:DefinedTerm
    84 N5c8dc82b79ab456bb2e44bb73b0ad745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Image Enhancement
    86 rdf:type schema:DefinedTerm
    87 N680f12ef1ee949059e90b8e33be1c24d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Physical Exertion
    89 rdf:type schema:DefinedTerm
    90 N770172ad6d2a4b029aee1766a8cfddd0 rdf:first sg:person.01067622763.33
    91 rdf:rest rdf:nil
    92 N77a7d1c101e7413297322057c941aa8e rdf:first sg:person.01251455667.16
    93 rdf:rest Nc8ebc6593e4842c3a1f3fd1f6f5dda25
    94 N7eb3817ed29540e29453fcd1b9f3e32c schema:name nlm_unique_id
    95 schema:value 9423534
    96 rdf:type schema:PropertyValue
    97 N9606bb69bb0c44e1b79cb1ac4bc1c3d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Myocardial Perfusion Imaging
    99 rdf:type schema:DefinedTerm
    100 N96d33a671a6b43b0adb0ff56f8ce602c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Tomography, Emission-Computed, Single-Photon
    102 rdf:type schema:DefinedTerm
    103 N98e4cce1a29e4b6c8439ce5ff4d067e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Male
    105 rdf:type schema:DefinedTerm
    106 Na2c75a2470e7421aaa0e0836f8089691 rdf:first sg:person.01214120740.79
    107 rdf:rest N25f0bccfb7cf44e0a75e0262ac43a7ac
    108 Na5546163c7424add8e3c7d2bb0fdcc03 schema:name doi
    109 schema:value 10.1007/s12350-015-0101-z
    110 rdf:type schema:PropertyValue
    111 Na9d17646bd9d45ee9aecf3a1d0166473 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Sensitivity and Specificity
    113 rdf:type schema:DefinedTerm
    114 Naaec797113ba4d25bcb7dc41b6374200 rdf:first sg:person.01143542411.58
    115 rdf:rest Na2c75a2470e7421aaa0e0836f8089691
    116 Nb3b6e466181742738b4fc5a1cbdd6a40 schema:name pubmed_id
    117 schema:value 25814218
    118 rdf:type schema:PropertyValue
    119 Nc8ebc6593e4842c3a1f3fd1f6f5dda25 rdf:first sg:person.01142310434.52
    120 rdf:rest N770172ad6d2a4b029aee1766a8cfddd0
    121 Nd4b5f7574dfb4a39914c488ed65bd1ed schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 Ndb24bc321773434a9c020040d07c8cc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Humans
    125 rdf:type schema:DefinedTerm
    126 Ne34d52a1b2ad4b1fb970f075733bda65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Female
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Medical and Health Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Cardiorespiratory Medicine and Haematology
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1106202 schema:issn 1071-3581
    136 1532-6551
    137 schema:name Journal of Nuclear Cardiology
    138 rdf:type schema:Periodical
    139 sg:person.01067622763.33 schema:affiliation https://www.grid.ac/institutes/grid.418529.3
    140 schema:familyName Marzullo
    141 schema:givenName Paolo
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067622763.33
    143 rdf:type schema:Person
    144 sg:person.01142310434.52 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    145 schema:familyName Coceani
    146 schema:givenName Michele
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142310434.52
    148 rdf:type schema:Person
    149 sg:person.01143542411.58 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    150 schema:familyName Gimelli
    151 schema:givenName Alessia
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58
    153 rdf:type schema:Person
    154 sg:person.01214120740.79 schema:affiliation https://www.grid.ac/institutes/grid.144189.1
    155 schema:familyName Liga
    156 schema:givenName Riccardo
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79
    158 rdf:type schema:Person
    159 sg:person.01251455667.16 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    160 schema:familyName Casagranda
    161 schema:givenName Mirta
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251455667.16
    163 rdf:type schema:Person
    164 sg:person.01353237735.11 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    165 schema:familyName Pasanisi
    166 schema:givenName Emilio Maria
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353237735.11
    168 rdf:type schema:Person
    169 sg:pub.10.1007/s00259-005-1779-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411656
    170 https://doi.org/10.1007/s00259-005-1779-y
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00259-010-1641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011599592
    173 https://doi.org/10.1007/s00259-010-1641-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00259-013-2505-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034412711
    176 https://doi.org/10.1007/s00259-013-2505-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s12350-012-9587-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047139834
    179 https://doi.org/10.1007/s12350-012-9587-9
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s12350-012-9641-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029089
    182 https://doi.org/10.1007/s12350-012-9641-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s12350-013-9730-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052192100
    185 https://doi.org/10.1007/s12350-013-9730-2
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s12350-013-9830-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018981531
    188 https://doi.org/10.1007/s12350-013-9830-z
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1016/j.nuclcard.2004.06.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033645872
    191 https://doi.org/10.1016/j.nuclcard.2004.06.128
    192 rdf:type schema:CreativeWork
    193 https://app.dimensions.ai/details/publication/pub.1077893908 schema:CreativeWork
    194 https://app.dimensions.ai/details/publication/pub.1082771886 schema:CreativeWork
    195 https://doi.org/10.1016/0002-9149(89)90278-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044554179
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0735-1097(89)90385-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005802478
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.jacc.2009.04.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050690639
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0002-9149(96)00385-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009960542
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1093/ehjci/jeu037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023228325
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1093/ehjci/jeu166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618115
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1161/01.cir.0000072790.23090.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729663
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1161/01.cir.58.3.505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019280203
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1161/circimaging.110.957399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020586362
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1161/circimaging.112.978270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004649796
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1259/bjr/59249210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569689
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.2967/jnumed.109.065532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038861017
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.2967/jnumed.111.091009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035173871
    220 rdf:type schema:CreativeWork
    221 https://www.grid.ac/institutes/grid.144189.1 schema:alternateName Azienda Ospedaliera Universitaria Pisana
    222 schema:name Cardio-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy
    223 rdf:type schema:Organization
    224 https://www.grid.ac/institutes/grid.418529.3 schema:alternateName Istituto di Fisiologia Clinica
    225 schema:name CNR, Institute of Clinical Physiology, Pisa, Italy
    226 Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy
    227 rdf:type schema:Organization
    228 https://www.grid.ac/institutes/grid.452599.6 schema:alternateName Fondazione Toscana Gabriele Monasterio
    229 schema:name Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy
    230 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...