Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Alessia Gimelli, Riccardo Liga, Emilio Maria Pasanisi, Mirta Casagranda, Michele Coceani, Paolo Marzullo

ABSTRACT

BACKGROUND: Some specifics of cardiac stress protocols, i.e., stressor used or exercise level achieved, may impact myocardial perfusion imaging (MPI) accuracy. METHODS: Four-hundred and seventy-five patients were submitted to MPI and coronary angiography. MPI was performed after exercise (303 patients) or dipyridamole stress (172 patients). A coronary stenosis ≥70% was considered significant. In case of exercise test, a peak heart rate (HR) <85% of the maximal age predicted was considered submaximal and categorized as follows: >75% and <85% ("Group 1"); <75% ("Group 2"). RESULTS: At coronary angiography, 312/475 (66%) patients showed significant stenosis. In the overall population, MPI showed a high accuracy in unmasking significant coronary stenosis, independently of the stress protocol adopted (AUC .76 for exercise vs .78 for vasodilator; P = NS). However, in case of an exercise stress test, a significant interaction between peak %HR and MPI diagnostic power was evident. While an elevated accuracy was still maintained in "Group 1" patients (AUC .79; P vs maximal exercise = NS), a significant drop was demonstrated in "Group 2" patients (AUC .66; P vs maximal exercise = .012, and P vs "Group 1" = .042). CONCLUSIONS: The accuracy of MPI is not influenced by the stress protocol adopted. Exercise MPI maintains an elevated accuracy as long as the %HR remains >75%. More... »

PAGES

1114-1122

References to SciGraph publications

  • 2012-10. 15-Year outcome after normal exercise 99mTc-sestamibi myocardial perfusion imaging: What is the duration of low risk after a normal scan? in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2013-04. A strategy of symptom-limited exercise with regadenoson-as-needed for stress myocardial perfusion imaging: A randomized controlled trial in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2005-07. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2004-09. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: A meta-analysis in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2014-04. Long-term mortality following normal exercise myocardial perfusion SPECT according to coronary disease risk factors in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2013-12. Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-02. Addition of atropine to submaximal exercise stress testing in patients evaluated for suspected ischaemia with SPECT imaging: a randomized, placebo-controlled trial in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-08. Angiographic correlation of myocardial perfusion imaging with half the radiation dose using ordered-subset expectation maximization with resolution recovery software in JOURNAL OF NUCLEAR CARDIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z

    DOI

    http://dx.doi.org/10.1007/s12350-015-0101-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022453088

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25814218


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exercise Test", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Ischemia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Perfusion Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Physical Exertion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed, Single-Photon", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gimelli", 
            "givenName": "Alessia", 
            "id": "sg:person.01143542411.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Azienda Ospedaliera Universitaria Pisana", 
              "id": "https://www.grid.ac/institutes/grid.144189.1", 
              "name": [
                "Cardio-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liga", 
            "givenName": "Riccardo", 
            "id": "sg:person.01214120740.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pasanisi", 
            "givenName": "Emilio Maria", 
            "id": "sg:person.01353237735.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353237735.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Casagranda", 
            "givenName": "Mirta", 
            "id": "sg:person.01251455667.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251455667.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coceani", 
            "givenName": "Michele", 
            "id": "sg:person.01142310434.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142310434.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Fisiologia Clinica", 
              "id": "https://www.grid.ac/institutes/grid.418529.3", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy", 
                "CNR, Institute of Clinical Physiology, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marzullo", 
            "givenName": "Paolo", 
            "id": "sg:person.01067622763.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067622763.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1161/circimaging.112.978270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004649796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.112.978270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004649796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0735-1097(89)90385-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005802478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9149(96)00385-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009960542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-010-1641-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011599592", 
              "https://doi.org/10.1007/s00259-010-1641-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1779-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411656", 
              "https://doi.org/10.1007/s00259-005-1779-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1779-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411656", 
              "https://doi.org/10.1007/s00259-005-1779-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-013-9830-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018981531", 
              "https://doi.org/10.1007/s12350-013-9830-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.58.3.505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019280203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.110.957399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.110.957399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.110.957399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.0000072790.23090.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021729663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-012-9641-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023029089", 
              "https://doi.org/10.1007/s12350-012-9641-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023228325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2004.06.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033645872", 
              "https://doi.org/10.1016/j.nuclcard.2004.06.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2505-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034412711", 
              "https://doi.org/10.1007/s00259-013-2505-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.091009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035173871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.065532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038861017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039618115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9149(89)90278-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044554179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-012-9587-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047139834", 
              "https://doi.org/10.1007/s12350-012-9587-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jacc.2009.04.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050690639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-013-9730-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052192100", 
              "https://doi.org/10.1007/s12350-013-9730-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr/59249210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064569689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077893908", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082771886", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-10", 
        "datePublishedReg": "2016-10-01", 
        "description": "BACKGROUND: Some specifics of cardiac stress protocols, i.e., stressor used or exercise level achieved, may impact myocardial perfusion imaging (MPI) accuracy.\nMETHODS: Four-hundred and seventy-five patients were submitted to MPI and coronary angiography. MPI was performed after exercise (303 patients) or dipyridamole stress (172 patients). A coronary stenosis \u226570% was considered significant. In case of exercise test, a peak heart rate (HR) <85% of the maximal age predicted was considered submaximal and categorized as follows: >75% and <85% (\"Group 1\"); <75% (\"Group 2\").\nRESULTS: At coronary angiography, 312/475 (66%) patients showed significant stenosis. In the overall population, MPI showed a high accuracy in unmasking significant coronary stenosis, independently of the stress protocol adopted (AUC .76 for exercise vs .78 for vasodilator; P\u00a0=\u00a0NS). However, in case of an exercise stress test, a significant interaction between peak %HR and MPI diagnostic power was evident. While an elevated accuracy was still maintained in \"Group 1\" patients (AUC .79; P vs maximal exercise\u00a0=\u00a0NS), a significant drop was demonstrated in \"Group 2\" patients (AUC .66; P vs maximal exercise\u00a0=\u00a0.012, and P vs \"Group 1\"\u00a0=\u00a0.042).\nCONCLUSIONS: The accuracy of MPI is not influenced by the stress protocol adopted. Exercise MPI maintains an elevated accuracy as long as the %HR remains >75%.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12350-015-0101-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1106202", 
            "issn": [
              "1071-3581", 
              "1532-6551"
            ], 
            "name": "Journal of Nuclear Cardiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden", 
        "pagination": "1114-1122", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6af87ae5a65449b056a41ba3e0adda0c64a57dc9925b8c190f48053dc4d8bcae"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25814218"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9423534"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12350-015-0101-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022453088"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12350-015-0101-z", 
          "https://app.dimensions.ai/details/publication/pub.1022453088"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000536.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12350-015-0101-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-015-0101-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    230 TRIPLES      21 PREDICATES      63 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12350-015-0101-z schema:about N251af1047a1c4649b663b429a728af70
    2 N3618b27cb7014f73bacadb2f7dabf156
    3 N3f56eee8176c4910a89257911d6cf85a
    4 N4107e57c7826430ea3112bea2fc28adb
    5 N517334ab1ae1465e9bfbe694d24b956e
    6 N6636a4e8a059496cb15134a5f2782715
    7 N692195ade6e44445a4dfc39b005d0bf9
    8 N7410f3f455dd458ba2a39d26fc82e6e8
    9 N7892afb39c604bec86989a35bd7e46cb
    10 Na82837fc5e2043098181e3a46f0ef5da
    11 Nbf70e1f36bbf43328fbd6fa0d653a55f
    12 anzsrc-for:11
    13 anzsrc-for:1102
    14 schema:author N3c3cf579773b4bda98884b14e246a980
    15 schema:citation sg:pub.10.1007/s00259-005-1779-y
    16 sg:pub.10.1007/s00259-010-1641-8
    17 sg:pub.10.1007/s00259-013-2505-9
    18 sg:pub.10.1007/s12350-012-9587-9
    19 sg:pub.10.1007/s12350-012-9641-7
    20 sg:pub.10.1007/s12350-013-9730-2
    21 sg:pub.10.1007/s12350-013-9830-z
    22 sg:pub.10.1016/j.nuclcard.2004.06.128
    23 https://app.dimensions.ai/details/publication/pub.1077893908
    24 https://app.dimensions.ai/details/publication/pub.1082771886
    25 https://doi.org/10.1016/0002-9149(89)90278-6
    26 https://doi.org/10.1016/0735-1097(89)90385-9
    27 https://doi.org/10.1016/j.jacc.2009.04.042
    28 https://doi.org/10.1016/s0002-9149(96)00385-2
    29 https://doi.org/10.1093/ehjci/jeu037
    30 https://doi.org/10.1093/ehjci/jeu166
    31 https://doi.org/10.1161/01.cir.0000072790.23090.41
    32 https://doi.org/10.1161/01.cir.58.3.505
    33 https://doi.org/10.1161/circimaging.110.957399
    34 https://doi.org/10.1161/circimaging.112.978270
    35 https://doi.org/10.1259/bjr/59249210
    36 https://doi.org/10.2967/jnumed.109.065532
    37 https://doi.org/10.2967/jnumed.111.091009
    38 schema:datePublished 2016-10
    39 schema:datePublishedReg 2016-10-01
    40 schema:description BACKGROUND: Some specifics of cardiac stress protocols, i.e., stressor used or exercise level achieved, may impact myocardial perfusion imaging (MPI) accuracy. METHODS: Four-hundred and seventy-five patients were submitted to MPI and coronary angiography. MPI was performed after exercise (303 patients) or dipyridamole stress (172 patients). A coronary stenosis ≥70% was considered significant. In case of exercise test, a peak heart rate (HR) <85% of the maximal age predicted was considered submaximal and categorized as follows: >75% and <85% ("Group 1"); <75% ("Group 2"). RESULTS: At coronary angiography, 312/475 (66%) patients showed significant stenosis. In the overall population, MPI showed a high accuracy in unmasking significant coronary stenosis, independently of the stress protocol adopted (AUC .76 for exercise vs .78 for vasodilator; P = NS). However, in case of an exercise stress test, a significant interaction between peak %HR and MPI diagnostic power was evident. While an elevated accuracy was still maintained in "Group 1" patients (AUC .79; P vs maximal exercise = NS), a significant drop was demonstrated in "Group 2" patients (AUC .66; P vs maximal exercise = .012, and P vs "Group 1" = .042). CONCLUSIONS: The accuracy of MPI is not influenced by the stress protocol adopted. Exercise MPI maintains an elevated accuracy as long as the %HR remains >75%.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N9929f7ddab4a4792a9439613af70fc22
    45 Na7eba877249a4bc7bb1d19f8b1b2300d
    46 sg:journal.1106202
    47 schema:name Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden
    48 schema:pagination 1114-1122
    49 schema:productId N2ecd67c343e445069f49f623f4f34ea3
    50 N9d636c7a39f4438cad9cd5d8cecdd4f5
    51 Nc3f4a35feae54f6ea7ee2b315c64afd2
    52 Ne5cd5e353a1044e3b4229dbbd46cf704
    53 Ne745d301c5b344af83c05ae5415517c5
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022453088
    55 https://doi.org/10.1007/s12350-015-0101-z
    56 schema:sdDatePublished 2019-04-10T16:47
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N5266559e9d9c46309e57a59ae55771d5
    59 schema:url http://link.springer.com/10.1007%2Fs12350-015-0101-z
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N0316683ada9d4f3a82e07fbb4702e01e rdf:first sg:person.01142310434.52
    64 rdf:rest N8f7d4640e388434e85403327a8499774
    65 N251af1047a1c4649b663b429a728af70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Physical Exertion
    67 rdf:type schema:DefinedTerm
    68 N2ecd67c343e445069f49f623f4f34ea3 schema:name doi
    69 schema:value 10.1007/s12350-015-0101-z
    70 rdf:type schema:PropertyValue
    71 N3618b27cb7014f73bacadb2f7dabf156 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Reproducibility of Results
    73 rdf:type schema:DefinedTerm
    74 N3c27cdab6c914f0dbaf76770cfaf8a07 rdf:first sg:person.01353237735.11
    75 rdf:rest Nb8c5f99952504dbbaf112f162e26c189
    76 N3c3cf579773b4bda98884b14e246a980 rdf:first sg:person.01143542411.58
    77 rdf:rest Na28d9e9d36154fb4bd5cfc0b697f03dd
    78 N3f56eee8176c4910a89257911d6cf85a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Image Enhancement
    80 rdf:type schema:DefinedTerm
    81 N4107e57c7826430ea3112bea2fc28adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Myocardial Ischemia
    83 rdf:type schema:DefinedTerm
    84 N517334ab1ae1465e9bfbe694d24b956e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Tomography, Emission-Computed, Single-Photon
    86 rdf:type schema:DefinedTerm
    87 N5266559e9d9c46309e57a59ae55771d5 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N6636a4e8a059496cb15134a5f2782715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Male
    91 rdf:type schema:DefinedTerm
    92 N692195ade6e44445a4dfc39b005d0bf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Sensitivity and Specificity
    94 rdf:type schema:DefinedTerm
    95 N7410f3f455dd458ba2a39d26fc82e6e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Myocardial Perfusion Imaging
    97 rdf:type schema:DefinedTerm
    98 N7892afb39c604bec86989a35bd7e46cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Female
    100 rdf:type schema:DefinedTerm
    101 N8f7d4640e388434e85403327a8499774 rdf:first sg:person.01067622763.33
    102 rdf:rest rdf:nil
    103 N9929f7ddab4a4792a9439613af70fc22 schema:issueNumber 5
    104 rdf:type schema:PublicationIssue
    105 N9d636c7a39f4438cad9cd5d8cecdd4f5 schema:name readcube_id
    106 schema:value 6af87ae5a65449b056a41ba3e0adda0c64a57dc9925b8c190f48053dc4d8bcae
    107 rdf:type schema:PropertyValue
    108 Na28d9e9d36154fb4bd5cfc0b697f03dd rdf:first sg:person.01214120740.79
    109 rdf:rest N3c27cdab6c914f0dbaf76770cfaf8a07
    110 Na7eba877249a4bc7bb1d19f8b1b2300d schema:volumeNumber 23
    111 rdf:type schema:PublicationVolume
    112 Na82837fc5e2043098181e3a46f0ef5da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Humans
    114 rdf:type schema:DefinedTerm
    115 Nb8c5f99952504dbbaf112f162e26c189 rdf:first sg:person.01251455667.16
    116 rdf:rest N0316683ada9d4f3a82e07fbb4702e01e
    117 Nbf70e1f36bbf43328fbd6fa0d653a55f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Exercise Test
    119 rdf:type schema:DefinedTerm
    120 Nc3f4a35feae54f6ea7ee2b315c64afd2 schema:name nlm_unique_id
    121 schema:value 9423534
    122 rdf:type schema:PropertyValue
    123 Ne5cd5e353a1044e3b4229dbbd46cf704 schema:name pubmed_id
    124 schema:value 25814218
    125 rdf:type schema:PropertyValue
    126 Ne745d301c5b344af83c05ae5415517c5 schema:name dimensions_id
    127 schema:value pub.1022453088
    128 rdf:type schema:PropertyValue
    129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Medical and Health Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Cardiorespiratory Medicine and Haematology
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1106202 schema:issn 1071-3581
    136 1532-6551
    137 schema:name Journal of Nuclear Cardiology
    138 rdf:type schema:Periodical
    139 sg:person.01067622763.33 schema:affiliation https://www.grid.ac/institutes/grid.418529.3
    140 schema:familyName Marzullo
    141 schema:givenName Paolo
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067622763.33
    143 rdf:type schema:Person
    144 sg:person.01142310434.52 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    145 schema:familyName Coceani
    146 schema:givenName Michele
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142310434.52
    148 rdf:type schema:Person
    149 sg:person.01143542411.58 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    150 schema:familyName Gimelli
    151 schema:givenName Alessia
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58
    153 rdf:type schema:Person
    154 sg:person.01214120740.79 schema:affiliation https://www.grid.ac/institutes/grid.144189.1
    155 schema:familyName Liga
    156 schema:givenName Riccardo
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79
    158 rdf:type schema:Person
    159 sg:person.01251455667.16 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    160 schema:familyName Casagranda
    161 schema:givenName Mirta
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251455667.16
    163 rdf:type schema:Person
    164 sg:person.01353237735.11 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    165 schema:familyName Pasanisi
    166 schema:givenName Emilio Maria
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353237735.11
    168 rdf:type schema:Person
    169 sg:pub.10.1007/s00259-005-1779-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411656
    170 https://doi.org/10.1007/s00259-005-1779-y
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00259-010-1641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011599592
    173 https://doi.org/10.1007/s00259-010-1641-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00259-013-2505-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034412711
    176 https://doi.org/10.1007/s00259-013-2505-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s12350-012-9587-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047139834
    179 https://doi.org/10.1007/s12350-012-9587-9
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s12350-012-9641-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029089
    182 https://doi.org/10.1007/s12350-012-9641-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s12350-013-9730-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052192100
    185 https://doi.org/10.1007/s12350-013-9730-2
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s12350-013-9830-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018981531
    188 https://doi.org/10.1007/s12350-013-9830-z
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1016/j.nuclcard.2004.06.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033645872
    191 https://doi.org/10.1016/j.nuclcard.2004.06.128
    192 rdf:type schema:CreativeWork
    193 https://app.dimensions.ai/details/publication/pub.1077893908 schema:CreativeWork
    194 https://app.dimensions.ai/details/publication/pub.1082771886 schema:CreativeWork
    195 https://doi.org/10.1016/0002-9149(89)90278-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044554179
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0735-1097(89)90385-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005802478
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.jacc.2009.04.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050690639
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0002-9149(96)00385-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009960542
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1093/ehjci/jeu037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023228325
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1093/ehjci/jeu166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618115
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1161/01.cir.0000072790.23090.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729663
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1161/01.cir.58.3.505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019280203
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1161/circimaging.110.957399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020586362
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1161/circimaging.112.978270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004649796
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1259/bjr/59249210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569689
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.2967/jnumed.109.065532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038861017
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.2967/jnumed.111.091009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035173871
    220 rdf:type schema:CreativeWork
    221 https://www.grid.ac/institutes/grid.144189.1 schema:alternateName Azienda Ospedaliera Universitaria Pisana
    222 schema:name Cardio-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy
    223 rdf:type schema:Organization
    224 https://www.grid.ac/institutes/grid.418529.3 schema:alternateName Istituto di Fisiologia Clinica
    225 schema:name CNR, Institute of Clinical Physiology, Pisa, Italy
    226 Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy
    227 rdf:type schema:Organization
    228 https://www.grid.ac/institutes/grid.452599.6 schema:alternateName Fondazione Toscana Gabriele Monasterio
    229 schema:name Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, 56124, Pisa, Italy
    230 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...