High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06-05

AUTHORS

W. Lane Duvall, Piotr J. Slomka, Jim R. Gerlach, Joseph M. Sweeny, Usman Baber, Lori B. Croft, Krista A. Guma, Titus George, Milena J. Henzlova

ABSTRACT

BackgroundRecently introduced high-efficiency (HE) SPECT cameras with solid-state CZT detectors have been shown to decrease imaging time and reduce radiation exposure to patients. An automated, computer-derived quantification of HE MPI has been shown to correlate well with coronary angiography on one HE SPECT camera system (D-SPECT), but has not been compared to visual interpretation on any of the HE SPECT platforms.MethodsPatients undergoing a clinically indicated Tc-99m sestamibi HE SPECT (GE Discovery 530c with supine and prone imaging) study over a 1-year period followed by a coronary angiogram within 2 months were included. Only patients with a history of CABG surgery were excluded. Both MPI studies and coronary angiograms were reinterpreted by blinded readers. One hundred and twenty two very low (risk of CAD < 5%) or low (risk of CAD < 10%) likelihood subjects with normal myocardial perfusion were used to create normal reference limits. Computer-derived quantification of the total perfusion deficit at stress and rest was obtained with QPS software. The visual and automated MPI quantification were compared to coronary angiography (≥70% luminal stenosis) by receiver operating curve (ROC) analysis.ResultsOf the 3,111 patients who underwent HE SPECT over a 1-year period, 160 patients qualified for the correlation study (66% male, 52% with a history of CAD). The ROC area under the curve (AUC) was similar for both the automated and the visual interpretations using both supine only and combined supine and prone images (0.69-0.74). Using thresholds determined from sensitivity and specificity curves, the automated reads showed higher specificity (59%-67% vs 27%-60%) and lower sensitivity (71%-72% vs 79%-93%) than the visual reads. By including prone images sensitivity decreased slightly but specificity increased for both. By excluding patients with known CAD and cardiomyopathies, AUC and specificity increased for both techniques (0.72-0.82). The use of a difference score to evaluate ischemic burden resulted in lower sensitivities but higher specificities for both automated and visual quantification. There was good agreement between the visual interpretation and automated quantification in the entire cohort of 160 unselected consecutive patients (r = 0.70-0.81, P < .0001).ConclusionsAutomated and visual quantification of high-efficiency SPECT MPI with the GE Discovery camera provides similar overall diagnostic accuracy when compared to coronary angiography. There was good correlation between the two methods of assessment. Combined supine and prone stress imaging provided the best diagnostic accuracy. More... »

PAGES

763-773

References to SciGraph publications

  • 2006-11. Stress protocols and tracers in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2005-01. Automated quantification of myocardial perfusion SPECT using simplified normal limits in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2006-11. Myocardial perfusion and function single photon emission computed tomography in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2009-02-11. ASNC Announcement in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2011-09-20. Prognostic value of automated vs visual analysis for adenosine stress myocardial perfusion SPECT in patients without prior coronary artery disease: A case-control study in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2009-08-18. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2010-10-21. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2002-03. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2010-01-27. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-04-14. Combined quantitative analysis of attenuation corrected and non-corrected myocadial perfusion SPECT: Method development and clinical validation in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2011-12-07. Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: Comparison to coronary angiography in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2010-11-12. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2011-06-03. Comparison of high efficiency CZT SPECT MPI to coronary angiography in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2011-09-02. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-04-29. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2007-01. Combined quantitative supine-prone myocardial perfusion spect improves detection of coronary artery disease and normalcy rates in women in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2009-02-26. Advances in technical aspects of myocardial perfusion SPECT imaging in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2011-07-15. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2006-09. Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT in JOURNAL OF NUCLEAR CARDIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12350-013-9735-x

    DOI

    http://dx.doi.org/10.1007/s12350-013-9735-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022486038

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23737160


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Area Under Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Constriction, Pathologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Angiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Artery Bypass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Artery Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exercise Test", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Perfusion Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "ROC Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Values", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Technetium Tc 99m Sestamibi", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed, Single-Photon", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duvall", 
            "givenName": "W. Lane", 
            "id": "sg:person.0765762124.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765762124.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.50956.3f", 
              "name": [
                "Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Slomka", 
            "givenName": "Piotr J.", 
            "id": "sg:person.01053217247.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053217247.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.50956.3f", 
              "name": [
                "Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerlach", 
            "givenName": "Jim R.", 
            "id": "sg:person.012053626557.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053626557.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sweeny", 
            "givenName": "Joseph M.", 
            "id": "sg:person.01240133260.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240133260.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baber", 
            "givenName": "Usman", 
            "id": "sg:person.01162210025.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162210025.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Croft", 
            "givenName": "Lori B.", 
            "id": "sg:person.01252602565.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252602565.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guma", 
            "givenName": "Krista A.", 
            "id": "sg:person.01060067270.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060067270.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "George", 
            "givenName": "Titus", 
            "id": "sg:person.01310544270.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310544270.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.416167.3", 
              "name": [
                "Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henzlova", 
            "givenName": "Milena J.", 
            "id": "sg:person.0643425065.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643425065.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12350-009-9052-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034235385", 
              "https://doi.org/10.1007/s12350-009-9052-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2006.06.131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049304591", 
              "https://doi.org/10.1016/j.nuclcard.2006.06.131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-010-9297-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022245576", 
              "https://doi.org/10.1007/s12350-010-9297-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-011-9382-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053553556", 
              "https://doi.org/10.1007/s12350-011-9382-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-010-9215-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025916424", 
              "https://doi.org/10.1007/s12350-010-9215-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1918-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034700602", 
              "https://doi.org/10.1007/s00259-011-1918-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2006.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026718720", 
              "https://doi.org/10.1016/j.nuclcard.2006.08.011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-009-9137-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004940899", 
              "https://doi.org/10.1007/s12350-009-9137-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1375-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051507500", 
              "https://doi.org/10.1007/s00259-009-1375-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-011-9449-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037436078", 
              "https://doi.org/10.1007/s12350-011-9449-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1877-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030056465", 
              "https://doi.org/10.1007/s00259-011-1877-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-010-9220-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018239055", 
              "https://doi.org/10.1007/s12350-010-9220-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2004.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002940203", 
              "https://doi.org/10.1016/j.nuclcard.2004.10.006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2006.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041651748", 
              "https://doi.org/10.1016/j.nuclcard.2006.08.008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2006.10.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006366982", 
              "https://doi.org/10.1016/j.nuclcard.2006.10.021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-009-9062-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224477", 
              "https://doi.org/10.1007/s12350-009-9062-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-011-9379-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028839196", 
              "https://doi.org/10.1007/s12350-011-9379-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1067/mnc.2002.123122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017867395", 
              "https://doi.org/10.1067/mnc.2002.123122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-011-9480-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014916254", 
              "https://doi.org/10.1007/s12350-011-9480-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-06-05", 
        "datePublishedReg": "2013-06-05", 
        "description": "BackgroundRecently introduced high-efficiency (HE) SPECT cameras with solid-state CZT detectors have been shown to decrease imaging time and reduce radiation exposure to patients. An automated, computer-derived quantification of HE MPI has been shown to correlate well with coronary angiography on one HE SPECT camera system (D-SPECT), but has not been compared to visual interpretation on any of the HE SPECT platforms.MethodsPatients undergoing a clinically indicated Tc-99m sestamibi HE SPECT (GE Discovery 530c with supine and prone imaging) study over a 1-year period followed by a coronary angiogram within 2\u00a0months were included. Only patients with a history of CABG surgery were excluded. Both MPI studies and coronary angiograms were reinterpreted by blinded readers. One hundred and twenty two very low (risk of CAD\u00a0<\u00a05%) or low (risk of CAD\u00a0<\u00a010%) likelihood subjects with normal myocardial perfusion were used to create normal reference limits. Computer-derived quantification of the total perfusion deficit at stress and rest was obtained with QPS software. The visual and automated MPI quantification were compared to coronary angiography (\u226570% luminal stenosis) by receiver operating curve (ROC) analysis.ResultsOf the 3,111 patients who underwent HE SPECT over a 1-year period, 160 patients qualified for the correlation study (66% male, 52% with a history of CAD). The ROC area under the curve (AUC) was similar for both the automated and the visual interpretations using both supine only and combined supine and prone images (0.69-0.74). Using thresholds determined from sensitivity and specificity curves, the automated reads showed higher specificity (59%-67% vs 27%-60%) and lower sensitivity (71%-72% vs 79%-93%) than the visual reads. By including prone images sensitivity decreased slightly but specificity increased for both. By excluding patients with known CAD and cardiomyopathies, AUC and specificity increased for both techniques (0.72-0.82). The use of a difference score to evaluate ischemic burden resulted in lower sensitivities but higher specificities for both automated and visual quantification. There was good agreement between the visual interpretation and automated quantification in the entire cohort of 160 unselected consecutive patients (r\u00a0=\u00a00.70-0.81, P\u00a0<\u00a0.0001).ConclusionsAutomated and visual quantification of high-efficiency SPECT MPI with the GE Discovery camera provides similar overall diagnostic accuracy when compared to coronary angiography. There was good correlation between the two methods of assessment. Combined supine and prone stress imaging provided the best diagnostic accuracy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12350-013-9735-x", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2541707", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1106202", 
            "issn": [
              "1071-3581", 
              "1532-6551"
            ], 
            "name": "Journal of Nuclear Cardiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "coronary angiography", 
          "coronary angiogram", 
          "diagnostic accuracy", 
          "normal myocardial perfusion", 
          "normal reference limits", 
          "unselected consecutive patients", 
          "total perfusion deficit", 
          "similar overall diagnostic accuracy", 
          "good diagnostic accuracy", 
          "overall diagnostic accuracy", 
          "Combined supine", 
          "ischemic burden", 
          "CABG surgery", 
          "consecutive patients", 
          "entire cohort", 
          "perfusion deficits", 
          "SPECT-MPI", 
          "stress imaging", 
          "myocardial perfusion", 
          "visual reads", 
          "patients", 
          "SPECT studies", 
          "angiography", 
          "high specificity", 
          "low sensitivity", 
          "MPI studies", 
          "reference limits", 
          "prone images", 
          "supine", 
          "blinded readers", 
          "curve analysis", 
          "specificity curves", 
          "radiation exposure", 
          "QPS software", 
          "ROC area", 
          "visual quantification", 
          "angiograms", 
          "methods of assessment", 
          "SPECT", 
          "difference scores", 
          "SPECT camera", 
          "specificity", 
          "MethodsPatients", 
          "surgery", 
          "BackgroundRecently", 
          "ResultsOf", 
          "cardiomyopathy", 
          "cohort", 
          "perfusion", 
          "visual interpretation", 
          "months", 
          "study", 
          "AUC", 
          "sensitivity", 
          "correlation study", 
          "period", 
          "burden", 
          "scores", 
          "deficits", 
          "exposure", 
          "good correlation", 
          "camera system", 
          "subjects", 
          "imaging", 
          "MPI", 
          "quantification", 
          "assessment", 
          "camera", 
          "rest", 
          "history", 
          "curves", 
          "CAD", 
          "correlation", 
          "image sensitivity", 
          "accuracy", 
          "use", 
          "threshold", 
          "software", 
          "stress", 
          "images", 
          "receiver", 
          "time", 
          "comparison", 
          "analysis", 
          "area", 
          "interpretation", 
          "reads", 
          "Tc", 
          "system", 
          "technique", 
          "method", 
          "readers", 
          "detector", 
          "limit", 
          "CZT detectors", 
          "agreement", 
          "good agreement"
        ], 
        "name": "High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography", 
        "pagination": "763-773", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022486038"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12350-013-9735-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23737160"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12350-013-9735-x", 
          "https://app.dimensions.ai/details/publication/pub.1022486038"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_587.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12350-013-9735-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-013-9735-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-013-9735-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-013-9735-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-013-9735-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    395 TRIPLES      21 PREDICATES      166 URIs      139 LITERALS      32 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12350-013-9735-x schema:about N04d169185351488790e21f335b267f57
    2 N0a717e793278484ebde39b060a451acc
    3 N1ffe31e79af1419a8856ea0e15e31b11
    4 N2f3c8f1e0e6248ea92d8246a52c36b69
    5 N3cf827dd2e4445cab7b8411784e88193
    6 N48d571f5a7be45c4923a1cf0b9d9a6cc
    7 N4eedd0c963ea430a833260993e6015b1
    8 N539431003cef4909b1aef6b5c9ba9c00
    9 N5449c2b3f8cb42259f43b7fba879fe87
    10 N5906bbf5d5144ac19464ef0848570387
    11 N67e554ffa20b4716a4a1524d8048ad97
    12 N7cff2ba758674c949c8699d8c8a9a55b
    13 N83035731a2204a7ab588f19f6aed8c77
    14 N9a06ed96d78d4b1fb9d4cce94cbe1ec5
    15 Nb5929d84c61246a0afe63f4053b4078c
    16 Nb8c8e8ccbffe443d8bc312afdcb0c592
    17 Nc8bd6246058d44598900fbe7a19a7163
    18 Nced0048b0bfd4d5887ea9572a9256734
    19 Ncf39a67fa10b44d09f9d8c28513e5b8f
    20 Nd80873106f4d4c58b7acd1f3379502da
    21 Nd80b06f087134e0f8c7bf7ff0b9a451d
    22 Ndaca1698a1f548cb8cacb8670a952820
    23 Ndd55ff2bb60346ee9bf24500e871280e
    24 Ne3650aa29be64585a2a5004be35a9790
    25 Nfbcdd022a97a489e88f36f1518207dc1
    26 anzsrc-for:11
    27 anzsrc-for:1102
    28 schema:author N0a2940a4e4b54484aa91ad62ec9572f3
    29 schema:citation sg:pub.10.1007/s00259-009-1375-7
    30 sg:pub.10.1007/s00259-011-1877-y
    31 sg:pub.10.1007/s00259-011-1918-6
    32 sg:pub.10.1007/s12350-009-9052-6
    33 sg:pub.10.1007/s12350-009-9062-4
    34 sg:pub.10.1007/s12350-009-9137-2
    35 sg:pub.10.1007/s12350-010-9215-5
    36 sg:pub.10.1007/s12350-010-9220-8
    37 sg:pub.10.1007/s12350-010-9297-0
    38 sg:pub.10.1007/s12350-011-9379-7
    39 sg:pub.10.1007/s12350-011-9382-z
    40 sg:pub.10.1007/s12350-011-9449-x
    41 sg:pub.10.1007/s12350-011-9480-y
    42 sg:pub.10.1016/j.nuclcard.2004.10.006
    43 sg:pub.10.1016/j.nuclcard.2006.06.131
    44 sg:pub.10.1016/j.nuclcard.2006.08.008
    45 sg:pub.10.1016/j.nuclcard.2006.08.011
    46 sg:pub.10.1016/j.nuclcard.2006.10.021
    47 sg:pub.10.1067/mnc.2002.123122
    48 schema:datePublished 2013-06-05
    49 schema:datePublishedReg 2013-06-05
    50 schema:description BackgroundRecently introduced high-efficiency (HE) SPECT cameras with solid-state CZT detectors have been shown to decrease imaging time and reduce radiation exposure to patients. An automated, computer-derived quantification of HE MPI has been shown to correlate well with coronary angiography on one HE SPECT camera system (D-SPECT), but has not been compared to visual interpretation on any of the HE SPECT platforms.MethodsPatients undergoing a clinically indicated Tc-99m sestamibi HE SPECT (GE Discovery 530c with supine and prone imaging) study over a 1-year period followed by a coronary angiogram within 2 months were included. Only patients with a history of CABG surgery were excluded. Both MPI studies and coronary angiograms were reinterpreted by blinded readers. One hundred and twenty two very low (risk of CAD < 5%) or low (risk of CAD < 10%) likelihood subjects with normal myocardial perfusion were used to create normal reference limits. Computer-derived quantification of the total perfusion deficit at stress and rest was obtained with QPS software. The visual and automated MPI quantification were compared to coronary angiography (≥70% luminal stenosis) by receiver operating curve (ROC) analysis.ResultsOf the 3,111 patients who underwent HE SPECT over a 1-year period, 160 patients qualified for the correlation study (66% male, 52% with a history of CAD). The ROC area under the curve (AUC) was similar for both the automated and the visual interpretations using both supine only and combined supine and prone images (0.69-0.74). Using thresholds determined from sensitivity and specificity curves, the automated reads showed higher specificity (59%-67% vs 27%-60%) and lower sensitivity (71%-72% vs 79%-93%) than the visual reads. By including prone images sensitivity decreased slightly but specificity increased for both. By excluding patients with known CAD and cardiomyopathies, AUC and specificity increased for both techniques (0.72-0.82). The use of a difference score to evaluate ischemic burden resulted in lower sensitivities but higher specificities for both automated and visual quantification. There was good agreement between the visual interpretation and automated quantification in the entire cohort of 160 unselected consecutive patients (r = 0.70-0.81, P < .0001).ConclusionsAutomated and visual quantification of high-efficiency SPECT MPI with the GE Discovery camera provides similar overall diagnostic accuracy when compared to coronary angiography. There was good correlation between the two methods of assessment. Combined supine and prone stress imaging provided the best diagnostic accuracy.
    51 schema:genre article
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N4fae0492cbca48ab93da66576e4a162c
    54 Nefa1d5d9ec144c7fbf0299dd1a2d5cc3
    55 sg:journal.1106202
    56 schema:keywords AUC
    57 BackgroundRecently
    58 CABG surgery
    59 CAD
    60 CZT detectors
    61 Combined supine
    62 MPI
    63 MPI studies
    64 MethodsPatients
    65 QPS software
    66 ROC area
    67 ResultsOf
    68 SPECT
    69 SPECT camera
    70 SPECT studies
    71 SPECT-MPI
    72 Tc
    73 accuracy
    74 agreement
    75 analysis
    76 angiograms
    77 angiography
    78 area
    79 assessment
    80 blinded readers
    81 burden
    82 camera
    83 camera system
    84 cardiomyopathy
    85 cohort
    86 comparison
    87 consecutive patients
    88 coronary angiogram
    89 coronary angiography
    90 correlation
    91 correlation study
    92 curve analysis
    93 curves
    94 deficits
    95 detector
    96 diagnostic accuracy
    97 difference scores
    98 entire cohort
    99 exposure
    100 good agreement
    101 good correlation
    102 good diagnostic accuracy
    103 high specificity
    104 history
    105 image sensitivity
    106 images
    107 imaging
    108 interpretation
    109 ischemic burden
    110 limit
    111 low sensitivity
    112 method
    113 methods of assessment
    114 months
    115 myocardial perfusion
    116 normal myocardial perfusion
    117 normal reference limits
    118 overall diagnostic accuracy
    119 patients
    120 perfusion
    121 perfusion deficits
    122 period
    123 prone images
    124 quantification
    125 radiation exposure
    126 readers
    127 reads
    128 receiver
    129 reference limits
    130 rest
    131 scores
    132 sensitivity
    133 similar overall diagnostic accuracy
    134 software
    135 specificity
    136 specificity curves
    137 stress
    138 stress imaging
    139 study
    140 subjects
    141 supine
    142 surgery
    143 system
    144 technique
    145 threshold
    146 time
    147 total perfusion deficit
    148 unselected consecutive patients
    149 use
    150 visual interpretation
    151 visual quantification
    152 visual reads
    153 schema:name High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography
    154 schema:pagination 763-773
    155 schema:productId N24155ce617a84bf0a2e00f8fbe4991f7
    156 N98fc11154ae34dafb104b1bde44eb7d3
    157 Nb150eee4e3e14b9a9504932cc33ef13f
    158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022486038
    159 https://doi.org/10.1007/s12350-013-9735-x
    160 schema:sdDatePublished 2022-12-01T06:30
    161 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    162 schema:sdPublisher Nf19c7062779a420db760950c392b567b
    163 schema:url https://doi.org/10.1007/s12350-013-9735-x
    164 sgo:license sg:explorer/license/
    165 sgo:sdDataset articles
    166 rdf:type schema:ScholarlyArticle
    167 N04d169185351488790e21f335b267f57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Radiopharmaceuticals
    169 rdf:type schema:DefinedTerm
    170 N0a2940a4e4b54484aa91ad62ec9572f3 rdf:first sg:person.0765762124.53
    171 rdf:rest N95d9f2caf46d4a6ba3ec7bc4fb4e464a
    172 N0a717e793278484ebde39b060a451acc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Constriction, Pathologic
    174 rdf:type schema:DefinedTerm
    175 N1ffe31e79af1419a8856ea0e15e31b11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Female
    177 rdf:type schema:DefinedTerm
    178 N24155ce617a84bf0a2e00f8fbe4991f7 schema:name doi
    179 schema:value 10.1007/s12350-013-9735-x
    180 rdf:type schema:PropertyValue
    181 N2f3c8f1e0e6248ea92d8246a52c36b69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Image Processing, Computer-Assisted
    183 rdf:type schema:DefinedTerm
    184 N3cf827dd2e4445cab7b8411784e88193 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Male
    186 rdf:type schema:DefinedTerm
    187 N48d571f5a7be45c4923a1cf0b9d9a6cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Aged
    189 rdf:type schema:DefinedTerm
    190 N4eedd0c963ea430a833260993e6015b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Technetium Tc 99m Sestamibi
    192 rdf:type schema:DefinedTerm
    193 N4fae0492cbca48ab93da66576e4a162c schema:issueNumber 5
    194 rdf:type schema:PublicationIssue
    195 N4fc6d65f26e640d3bb9fc9b51d03ea6f rdf:first sg:person.012053626557.95
    196 rdf:rest N50e5a5576a84486ead6ee36923784fc2
    197 N50e5a5576a84486ead6ee36923784fc2 rdf:first sg:person.01240133260.70
    198 rdf:rest N887edecad5b54229977ea930e3998fd4
    199 N539431003cef4909b1aef6b5c9ba9c00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Reproducibility of Results
    201 rdf:type schema:DefinedTerm
    202 N5449c2b3f8cb42259f43b7fba879fe87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Area Under Curve
    204 rdf:type schema:DefinedTerm
    205 N5906bbf5d5144ac19464ef0848570387 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Time Factors
    207 rdf:type schema:DefinedTerm
    208 N67e554ffa20b4716a4a1524d8048ad97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Cohort Studies
    210 rdf:type schema:DefinedTerm
    211 N7cff2ba758674c949c8699d8c8a9a55b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Coronary Angiography
    213 rdf:type schema:DefinedTerm
    214 N83035731a2204a7ab588f19f6aed8c77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Coronary Artery Disease
    216 rdf:type schema:DefinedTerm
    217 N8484619ccc7e46a4844d95333759f26f rdf:first sg:person.01310544270.85
    218 rdf:rest Ne9a6dfaf526d4510a4c7b7a307266a70
    219 N887edecad5b54229977ea930e3998fd4 rdf:first sg:person.01162210025.76
    220 rdf:rest N8eeebe107c9342ac92a0ca9505f45dcb
    221 N8eeebe107c9342ac92a0ca9505f45dcb rdf:first sg:person.01252602565.36
    222 rdf:rest Na0e73378c2e64ad89b5cc1ede2bcf540
    223 N95d9f2caf46d4a6ba3ec7bc4fb4e464a rdf:first sg:person.01053217247.58
    224 rdf:rest N4fc6d65f26e640d3bb9fc9b51d03ea6f
    225 N98fc11154ae34dafb104b1bde44eb7d3 schema:name pubmed_id
    226 schema:value 23737160
    227 rdf:type schema:PropertyValue
    228 N9a06ed96d78d4b1fb9d4cce94cbe1ec5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name Exercise Test
    230 rdf:type schema:DefinedTerm
    231 Na0e73378c2e64ad89b5cc1ede2bcf540 rdf:first sg:person.01060067270.44
    232 rdf:rest N8484619ccc7e46a4844d95333759f26f
    233 Nb150eee4e3e14b9a9504932cc33ef13f schema:name dimensions_id
    234 schema:value pub.1022486038
    235 rdf:type schema:PropertyValue
    236 Nb5929d84c61246a0afe63f4053b4078c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    237 schema:name Tomography, Emission-Computed, Single-Photon
    238 rdf:type schema:DefinedTerm
    239 Nb8c8e8ccbffe443d8bc312afdcb0c592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    240 schema:name Humans
    241 rdf:type schema:DefinedTerm
    242 Nc8bd6246058d44598900fbe7a19a7163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    243 schema:name Myocardial Perfusion Imaging
    244 rdf:type schema:DefinedTerm
    245 Nced0048b0bfd4d5887ea9572a9256734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    246 schema:name Middle Aged
    247 rdf:type schema:DefinedTerm
    248 Ncf39a67fa10b44d09f9d8c28513e5b8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    249 schema:name ROC Curve
    250 rdf:type schema:DefinedTerm
    251 Nd80873106f4d4c58b7acd1f3379502da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    252 schema:name Retrospective Studies
    253 rdf:type schema:DefinedTerm
    254 Nd80b06f087134e0f8c7bf7ff0b9a451d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    255 schema:name Sensitivity and Specificity
    256 rdf:type schema:DefinedTerm
    257 Ndaca1698a1f548cb8cacb8670a952820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    258 schema:name Automation
    259 rdf:type schema:DefinedTerm
    260 Ndd55ff2bb60346ee9bf24500e871280e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    261 schema:name Coronary Artery Bypass
    262 rdf:type schema:DefinedTerm
    263 Ne3650aa29be64585a2a5004be35a9790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    264 schema:name Software
    265 rdf:type schema:DefinedTerm
    266 Ne9a6dfaf526d4510a4c7b7a307266a70 rdf:first sg:person.0643425065.87
    267 rdf:rest rdf:nil
    268 Nefa1d5d9ec144c7fbf0299dd1a2d5cc3 schema:volumeNumber 20
    269 rdf:type schema:PublicationVolume
    270 Nf19c7062779a420db760950c392b567b schema:name Springer Nature - SN SciGraph project
    271 rdf:type schema:Organization
    272 Nfbcdd022a97a489e88f36f1518207dc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    273 schema:name Reference Values
    274 rdf:type schema:DefinedTerm
    275 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    276 schema:name Medical and Health Sciences
    277 rdf:type schema:DefinedTerm
    278 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    279 schema:name Cardiorespiratory Medicine and Haematology
    280 rdf:type schema:DefinedTerm
    281 sg:grant.2541707 http://pending.schema.org/fundedItem sg:pub.10.1007/s12350-013-9735-x
    282 rdf:type schema:MonetaryGrant
    283 sg:journal.1106202 schema:issn 1071-3581
    284 1532-6551
    285 schema:name Journal of Nuclear Cardiology
    286 schema:publisher Springer Nature
    287 rdf:type schema:Periodical
    288 sg:person.01053217247.58 schema:affiliation grid-institutes:grid.50956.3f
    289 schema:familyName Slomka
    290 schema:givenName Piotr J.
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053217247.58
    292 rdf:type schema:Person
    293 sg:person.01060067270.44 schema:affiliation grid-institutes:grid.416167.3
    294 schema:familyName Guma
    295 schema:givenName Krista A.
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060067270.44
    297 rdf:type schema:Person
    298 sg:person.01162210025.76 schema:affiliation grid-institutes:grid.416167.3
    299 schema:familyName Baber
    300 schema:givenName Usman
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162210025.76
    302 rdf:type schema:Person
    303 sg:person.012053626557.95 schema:affiliation grid-institutes:grid.50956.3f
    304 schema:familyName Gerlach
    305 schema:givenName Jim R.
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053626557.95
    307 rdf:type schema:Person
    308 sg:person.01240133260.70 schema:affiliation grid-institutes:grid.416167.3
    309 schema:familyName Sweeny
    310 schema:givenName Joseph M.
    311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240133260.70
    312 rdf:type schema:Person
    313 sg:person.01252602565.36 schema:affiliation grid-institutes:grid.416167.3
    314 schema:familyName Croft
    315 schema:givenName Lori B.
    316 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252602565.36
    317 rdf:type schema:Person
    318 sg:person.01310544270.85 schema:affiliation grid-institutes:grid.416167.3
    319 schema:familyName George
    320 schema:givenName Titus
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310544270.85
    322 rdf:type schema:Person
    323 sg:person.0643425065.87 schema:affiliation grid-institutes:grid.416167.3
    324 schema:familyName Henzlova
    325 schema:givenName Milena J.
    326 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643425065.87
    327 rdf:type schema:Person
    328 sg:person.0765762124.53 schema:affiliation grid-institutes:grid.416167.3
    329 schema:familyName Duvall
    330 schema:givenName W. Lane
    331 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765762124.53
    332 rdf:type schema:Person
    333 sg:pub.10.1007/s00259-009-1375-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051507500
    334 https://doi.org/10.1007/s00259-009-1375-7
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1007/s00259-011-1877-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030056465
    337 https://doi.org/10.1007/s00259-011-1877-y
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1007/s00259-011-1918-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034700602
    340 https://doi.org/10.1007/s00259-011-1918-6
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1007/s12350-009-9052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034235385
    343 https://doi.org/10.1007/s12350-009-9052-6
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1007/s12350-009-9062-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013224477
    346 https://doi.org/10.1007/s12350-009-9062-4
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1007/s12350-009-9137-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004940899
    349 https://doi.org/10.1007/s12350-009-9137-2
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1007/s12350-010-9215-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025916424
    352 https://doi.org/10.1007/s12350-010-9215-5
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1007/s12350-010-9220-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018239055
    355 https://doi.org/10.1007/s12350-010-9220-8
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1007/s12350-010-9297-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245576
    358 https://doi.org/10.1007/s12350-010-9297-0
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1007/s12350-011-9379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028839196
    361 https://doi.org/10.1007/s12350-011-9379-7
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1007/s12350-011-9382-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053553556
    364 https://doi.org/10.1007/s12350-011-9382-z
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1007/s12350-011-9449-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037436078
    367 https://doi.org/10.1007/s12350-011-9449-x
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1007/s12350-011-9480-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014916254
    370 https://doi.org/10.1007/s12350-011-9480-y
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1016/j.nuclcard.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002940203
    373 https://doi.org/10.1016/j.nuclcard.2004.10.006
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1016/j.nuclcard.2006.06.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049304591
    376 https://doi.org/10.1016/j.nuclcard.2006.06.131
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1016/j.nuclcard.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041651748
    379 https://doi.org/10.1016/j.nuclcard.2006.08.008
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1016/j.nuclcard.2006.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026718720
    382 https://doi.org/10.1016/j.nuclcard.2006.08.011
    383 rdf:type schema:CreativeWork
    384 sg:pub.10.1016/j.nuclcard.2006.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006366982
    385 https://doi.org/10.1016/j.nuclcard.2006.10.021
    386 rdf:type schema:CreativeWork
    387 sg:pub.10.1067/mnc.2002.123122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017867395
    388 https://doi.org/10.1067/mnc.2002.123122
    389 rdf:type schema:CreativeWork
    390 grid-institutes:grid.416167.3 schema:alternateName Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA
    391 schema:name Mount Sinai Division of Cardiology (Mount Sinai Heart), Mount Sinai Medical Center, One Gustave L Levy Place, P.O. Box 1030, 10029, New York, NY, USA
    392 rdf:type schema:Organization
    393 grid-institutes:grid.50956.3f schema:alternateName Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, New York, NY, USA
    394 schema:name Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, New York, NY, USA
    395 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...