Non-contrast cardiac computed tomography can accurately detect chronic myocardial infarction: Validation study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02

AUTHORS

Mohit Gupta, Jigar Kadakia, Yalcin Hacioglu, Naser Ahmadi, Amish Patel, Taeyoung Choi, Gregg Yamada, Matthew Budoff

ABSTRACT

BACKGROUND: This study evaluates whether non-contrast cardiac computed tomography (CCT) can detect chronic myocardial infarction (MI) in patients with irreversible perfusion defects on nuclear myocardial perfusion imaging (MPI). METHODS: One hundred twenty-two symptomatic patients with irreversible perfusion defect (N = 62) or normal MPI (N = 60) underwent coronary artery calcium (CAC) scanning. MI on these non-contrast CCTs was visually detected based on the hypo-attenuation areas (dark) in the myocardium and corresponding Hounsfield units (HU) were measured. RESULTS: Non-contrast CCT accurately detected MI in 57 patients with irreversible perfusion defect on MPI, yielding a sensitivity of 92%, specificity of 72%, negative predictive value (NPV) of 90%, and a positive predictive value (PPV) of 77%. On a per myocardial region analysis, non-contrast CT showed a sensitivity of 70%, specificity of 85%, NPV of 91%, and a PPV of 57%. The ROC curve showed that the optimal cutoff value of LV myocardium HU to predict MI on non-contrast CCT was 21.7 with a sensitivity of 97.4% and specificity of 99.7%. CONCLUSION: Non-contrast CCT has an excellent agreement with MPI in detecting chronic MI. This study highlights a novel clinical utility of non-contrast CCT in addition to assessment of overall burden of atherosclerosis measured by CAC. More... »

PAGES

96-103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12350-010-9314-3

DOI

http://dx.doi.org/10.1007/s12350-010-9314-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043692877

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21128040


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chronic Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Mohit", 
        "id": "sg:person.01256710430.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256710430.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadakia", 
        "givenName": "Jigar", 
        "id": "sg:person.0734677401.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734677401.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hacioglu", 
        "givenName": "Yalcin", 
        "id": "sg:person.0653757176.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653757176.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmadi", 
        "givenName": "Naser", 
        "id": "sg:person.0760400631.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760400631.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Amish", 
        "id": "sg:person.01255771435.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255771435.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Taeyoung", 
        "id": "sg:person.012401045737.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401045737.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Gregg", 
        "id": "sg:person.01372220035.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372220035.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124\u00a0W Carson St., 90502, Torrance, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budoff", 
        "givenName": "Matthew", 
        "id": "sg:person.010155754437.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155754437.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/circulationaha.105.521450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000306762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.107.727826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010022228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.529511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012256566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198411013111802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014720951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.83.2.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019306190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023367336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1536/ihj.37.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025992923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2007.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028194296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(05)80043-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030980066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200407000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035262234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200407000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035262234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2362040912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036067773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036812459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.1989.00390070068008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038014299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.100.19.1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038926687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0402.102975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040014494", 
          "https://doi.org/10.1007/s00330-005-0057-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040014494", 
          "https://doi.org/10.1007/s00330-005-0057-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(85)80545-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041007633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041651748", 
          "https://doi.org/10.1016/j.nuclcard.2006.08.008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12389-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042369788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12389-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042369788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(99)90019-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042436917", 
          "https://doi.org/10.1016/s1071-3581(99)90019-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(99)00524-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045617268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.02.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045810847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31815a054a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046311494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31815a054a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046311494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.570648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046352388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1054-8807(03)00134-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048426820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc2301.092121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048761288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2007.08.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050871174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2006.087874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051950352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.178458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052710337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.149.7.1528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054112553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-135-9-200111060-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073705183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078241210", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000418828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078495397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082375127", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083048612", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02", 
    "datePublishedReg": "2011-02-01", 
    "description": "BACKGROUND: This study evaluates whether non-contrast cardiac computed tomography (CCT) can detect chronic myocardial infarction (MI) in patients with irreversible perfusion defects on nuclear myocardial perfusion imaging (MPI).\nMETHODS: One hundred twenty-two symptomatic patients with irreversible perfusion defect (N = 62) or normal MPI (N = 60) underwent coronary artery calcium (CAC) scanning. MI on these non-contrast CCTs was visually detected based on the hypo-attenuation areas (dark) in the myocardium and corresponding Hounsfield units (HU) were measured.\nRESULTS: Non-contrast CCT accurately detected MI in 57 patients with irreversible perfusion defect on MPI, yielding a sensitivity of 92%, specificity of 72%, negative predictive value (NPV) of 90%, and a positive predictive value (PPV) of 77%. On a per myocardial region analysis, non-contrast CT showed a sensitivity of 70%, specificity of 85%, NPV of 91%, and a PPV of 57%. The ROC curve showed that the optimal cutoff value of LV myocardium HU to predict MI on non-contrast CCT was 21.7 with a sensitivity of 97.4% and specificity of 99.7%.\nCONCLUSION: Non-contrast CCT has an excellent agreement with MPI in detecting chronic MI. This study highlights a novel clinical utility of non-contrast CCT in addition to assessment of overall burden of atherosclerosis measured by CAC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12350-010-9314-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1106202", 
        "issn": [
          "1071-3581", 
          "1532-6551"
        ], 
        "name": "Journal of Nuclear Cardiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Non-contrast cardiac computed tomography can accurately detect chronic myocardial infarction: Validation study", 
    "pagination": "96-103", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d020327d434b1cf809db24e5eba4d136bc65b2922bccaba1766c23ae8a8c77c1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21128040"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9423534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12350-010-9314-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043692877"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12350-010-9314-3", 
      "https://app.dimensions.ai/details/publication/pub.1043692877"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12350-010-9314-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-010-9314-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-010-9314-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-010-9314-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-010-9314-3'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      78 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12350-010-9314-3 schema:about N053690ea20794c7ca4c48d931e489060
2 N05caec80e07f4162ba13988209298a20
3 N09dd59e3336b456db34344db85277dac
4 N1081bbc2311b40adbbc7fb42c90cd17a
5 N331b0ade1c6b4fe7ae3bd18b7816cf2d
6 N481d0c86705f45889f4feea27ca319f3
7 N57429b9a6aa34e3c890ffed2264e7a40
8 N6fd6cadc8bbf4f0b8c45c042cccad0d3
9 N776dfff8659b4c369f2e5ee40ce772b1
10 N8882b097fd5446e9b3b595154d24e569
11 Na4f53136cea34099a59327a9c4f2979c
12 Nad4a19afa5de4f248bdaf4b5793b6c2c
13 Nd8677cbc753d4d27b2d06fa978cbca65
14 Nf333b5d2240248eb8a81456606f4f4ba
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author Ne68781f1f4e94baaa92d57b68ad36c61
18 schema:citation sg:pub.10.1007/s00330-005-0057-5
19 sg:pub.10.1016/j.nuclcard.2006.08.008
20 sg:pub.10.1016/s1071-3581(99)90019-3
21 https://app.dimensions.ai/details/publication/pub.1078241210
22 https://app.dimensions.ai/details/publication/pub.1082375127
23 https://app.dimensions.ai/details/publication/pub.1083048612
24 https://doi.org/10.1001/archinte.149.7.1528
25 https://doi.org/10.1001/archinte.1989.00390070068008
26 https://doi.org/10.1002/mrm.21207
27 https://doi.org/10.1016/j.crad.2007.08.007
28 https://doi.org/10.1016/j.ijcard.2007.08.072
29 https://doi.org/10.1016/j.jacc.2006.02.059
30 https://doi.org/10.1016/j.jcct.2009.12.003
31 https://doi.org/10.1016/s0001-2998(05)80043-1
32 https://doi.org/10.1016/s0140-6736(03)12389-6
33 https://doi.org/10.1016/s0735-1097(85)80545-3
34 https://doi.org/10.1016/s0735-1097(99)00524-0
35 https://doi.org/10.1016/s1054-8807(03)00134-0
36 https://doi.org/10.1056/nejm198411013111802
37 https://doi.org/10.1097/00004728-200407000-00004
38 https://doi.org/10.1097/rli.0b013e31815a054a
39 https://doi.org/10.1136/hrt.2006.087874
40 https://doi.org/10.1148/radiol.2362040912
41 https://doi.org/10.1159/000418828
42 https://doi.org/10.1161/01.cir.100.19.1992
43 https://doi.org/10.1161/01.cir.83.2.363
44 https://doi.org/10.1161/circulationaha.104.529511
45 https://doi.org/10.1161/circulationaha.105.521450
46 https://doi.org/10.1161/circulationaha.105.570648
47 https://doi.org/10.1161/circulationaha.106.178458
48 https://doi.org/10.1161/circulationaha.107.727826
49 https://doi.org/10.1161/hc0402.102975
50 https://doi.org/10.1161/hc2301.092121
51 https://doi.org/10.1536/ihj.37.301
52 https://doi.org/10.7326/0003-4819-135-9-200111060-00010
53 schema:datePublished 2011-02
54 schema:datePublishedReg 2011-02-01
55 schema:description BACKGROUND: This study evaluates whether non-contrast cardiac computed tomography (CCT) can detect chronic myocardial infarction (MI) in patients with irreversible perfusion defects on nuclear myocardial perfusion imaging (MPI). METHODS: One hundred twenty-two symptomatic patients with irreversible perfusion defect (N = 62) or normal MPI (N = 60) underwent coronary artery calcium (CAC) scanning. MI on these non-contrast CCTs was visually detected based on the hypo-attenuation areas (dark) in the myocardium and corresponding Hounsfield units (HU) were measured. RESULTS: Non-contrast CCT accurately detected MI in 57 patients with irreversible perfusion defect on MPI, yielding a sensitivity of 92%, specificity of 72%, negative predictive value (NPV) of 90%, and a positive predictive value (PPV) of 77%. On a per myocardial region analysis, non-contrast CT showed a sensitivity of 70%, specificity of 85%, NPV of 91%, and a PPV of 57%. The ROC curve showed that the optimal cutoff value of LV myocardium HU to predict MI on non-contrast CCT was 21.7 with a sensitivity of 97.4% and specificity of 99.7%. CONCLUSION: Non-contrast CCT has an excellent agreement with MPI in detecting chronic MI. This study highlights a novel clinical utility of non-contrast CCT in addition to assessment of overall burden of atherosclerosis measured by CAC.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf Nb9d8d6e850c641ceaa9244f586f95d99
60 Ndcb1f9e8a4d340de9fb668045e0e8d1c
61 sg:journal.1106202
62 schema:name Non-contrast cardiac computed tomography can accurately detect chronic myocardial infarction: Validation study
63 schema:pagination 96-103
64 schema:productId N6d0796d3c0dc43acbfac50d0c19c4e93
65 N7826428e4bc24b91a6065f862dbcbc20
66 N924e8d0a093e42f3a31c28f5fcf8ec48
67 Nb78f7acbe0b1446da53eeebea6f5608c
68 Nc7395745ba0c4ce8be79d0ccf13af4b1
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043692877
70 https://doi.org/10.1007/s12350-010-9314-3
71 schema:sdDatePublished 2019-04-10T20:02
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nf70183f7a4f8490ebf777603fd413159
74 schema:url http://link.springer.com/10.1007%2Fs12350-010-9314-3
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N053690ea20794c7ca4c48d931e489060 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Contrast Media
80 rdf:type schema:DefinedTerm
81 N05caec80e07f4162ba13988209298a20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N09dd59e3336b456db34344db85277dac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Sensitivity and Specificity
86 rdf:type schema:DefinedTerm
87 N1081bbc2311b40adbbc7fb42c90cd17a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Coronary Angiography
89 rdf:type schema:DefinedTerm
90 N22e5e815314e4678a18d1893230f2acb rdf:first sg:person.0760400631.27
91 rdf:rest N55d25aa82be64e678fc8a039b082266a
92 N331b0ade1c6b4fe7ae3bd18b7816cf2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Tomography, X-Ray Computed
94 rdf:type schema:DefinedTerm
95 N46b3b90fa3d0485c8886f3d5f988069a rdf:first sg:person.010155754437.33
96 rdf:rest rdf:nil
97 N481d0c86705f45889f4feea27ca319f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Myocardial Perfusion Imaging
99 rdf:type schema:DefinedTerm
100 N5080008438fb4ba386c5e87f01b01c56 rdf:first sg:person.012401045737.03
101 rdf:rest N8a52e48e8f45472eabdb6dbb450f1c78
102 N55d25aa82be64e678fc8a039b082266a rdf:first sg:person.01255771435.22
103 rdf:rest N5080008438fb4ba386c5e87f01b01c56
104 N57429b9a6aa34e3c890ffed2264e7a40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Coronary Artery Disease
106 rdf:type schema:DefinedTerm
107 N6d0796d3c0dc43acbfac50d0c19c4e93 schema:name pubmed_id
108 schema:value 21128040
109 rdf:type schema:PropertyValue
110 N6fd6cadc8bbf4f0b8c45c042cccad0d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N77548d4a73af4ed6ae50e51fee2bdd1c rdf:first sg:person.0653757176.53
114 rdf:rest N22e5e815314e4678a18d1893230f2acb
115 N776dfff8659b4c369f2e5ee40ce772b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Reproducibility of Results
117 rdf:type schema:DefinedTerm
118 N7826428e4bc24b91a6065f862dbcbc20 schema:name doi
119 schema:value 10.1007/s12350-010-9314-3
120 rdf:type schema:PropertyValue
121 N8882b097fd5446e9b3b595154d24e569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Radiographic Image Interpretation, Computer-Assisted
123 rdf:type schema:DefinedTerm
124 N8a52e48e8f45472eabdb6dbb450f1c78 rdf:first sg:person.01372220035.73
125 rdf:rest N46b3b90fa3d0485c8886f3d5f988069a
126 N924e8d0a093e42f3a31c28f5fcf8ec48 schema:name nlm_unique_id
127 schema:value 9423534
128 rdf:type schema:PropertyValue
129 N9decd8e22e5543d8bb15018adfefca8d rdf:first sg:person.0734677401.22
130 rdf:rest N77548d4a73af4ed6ae50e51fee2bdd1c
131 Na4f53136cea34099a59327a9c4f2979c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Myocardial Infarction
133 rdf:type schema:DefinedTerm
134 Nad4a19afa5de4f248bdaf4b5793b6c2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Female
136 rdf:type schema:DefinedTerm
137 Nb78f7acbe0b1446da53eeebea6f5608c schema:name readcube_id
138 schema:value d020327d434b1cf809db24e5eba4d136bc65b2922bccaba1766c23ae8a8c77c1
139 rdf:type schema:PropertyValue
140 Nb9d8d6e850c641ceaa9244f586f95d99 schema:issueNumber 1
141 rdf:type schema:PublicationIssue
142 Nc7395745ba0c4ce8be79d0ccf13af4b1 schema:name dimensions_id
143 schema:value pub.1043692877
144 rdf:type schema:PropertyValue
145 Nd8677cbc753d4d27b2d06fa978cbca65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Middle Aged
147 rdf:type schema:DefinedTerm
148 Ndcb1f9e8a4d340de9fb668045e0e8d1c schema:volumeNumber 18
149 rdf:type schema:PublicationVolume
150 Ne68781f1f4e94baaa92d57b68ad36c61 rdf:first sg:person.01256710430.15
151 rdf:rest N9decd8e22e5543d8bb15018adfefca8d
152 Nf333b5d2240248eb8a81456606f4f4ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Chronic Disease
154 rdf:type schema:DefinedTerm
155 Nf70183f7a4f8490ebf777603fd413159 schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
161 schema:name Clinical Sciences
162 rdf:type schema:DefinedTerm
163 sg:journal.1106202 schema:issn 1071-3581
164 1532-6551
165 schema:name Journal of Nuclear Cardiology
166 rdf:type schema:Periodical
167 sg:person.010155754437.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
168 schema:familyName Budoff
169 schema:givenName Matthew
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155754437.33
171 rdf:type schema:Person
172 sg:person.012401045737.03 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
173 schema:familyName Choi
174 schema:givenName Taeyoung
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401045737.03
176 rdf:type schema:Person
177 sg:person.01255771435.22 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
178 schema:familyName Patel
179 schema:givenName Amish
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255771435.22
181 rdf:type schema:Person
182 sg:person.01256710430.15 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
183 schema:familyName Gupta
184 schema:givenName Mohit
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256710430.15
186 rdf:type schema:Person
187 sg:person.01372220035.73 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
188 schema:familyName Yamada
189 schema:givenName Gregg
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372220035.73
191 rdf:type schema:Person
192 sg:person.0653757176.53 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
193 schema:familyName Hacioglu
194 schema:givenName Yalcin
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653757176.53
196 rdf:type schema:Person
197 sg:person.0734677401.22 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
198 schema:familyName Kadakia
199 schema:givenName Jigar
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734677401.22
201 rdf:type schema:Person
202 sg:person.0760400631.27 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
203 schema:familyName Ahmadi
204 schema:givenName Naser
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760400631.27
206 rdf:type schema:Person
207 sg:pub.10.1007/s00330-005-0057-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040014494
208 https://doi.org/10.1007/s00330-005-0057-5
209 rdf:type schema:CreativeWork
210 sg:pub.10.1016/j.nuclcard.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041651748
211 https://doi.org/10.1016/j.nuclcard.2006.08.008
212 rdf:type schema:CreativeWork
213 sg:pub.10.1016/s1071-3581(99)90019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042436917
214 https://doi.org/10.1016/s1071-3581(99)90019-3
215 rdf:type schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1078241210 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1082375127 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1083048612 schema:CreativeWork
219 https://doi.org/10.1001/archinte.149.7.1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054112553
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1001/archinte.1989.00390070068008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038014299
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/mrm.21207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023367336
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.crad.2007.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028194296
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.ijcard.2007.08.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050871174
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.jacc.2006.02.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045810847
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jcct.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036812459
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0001-2998(05)80043-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030980066
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0140-6736(03)12389-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042369788
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0735-1097(85)80545-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041007633
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0735-1097(99)00524-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045617268
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s1054-8807(03)00134-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048426820
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1056/nejm198411013111802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014720951
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1097/00004728-200407000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035262234
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1097/rli.0b013e31815a054a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046311494
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1136/hrt.2006.087874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051950352
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1148/radiol.2362040912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036067773
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1159/000418828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078495397
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1161/01.cir.100.19.1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038926687
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1161/01.cir.83.2.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019306190
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1161/circulationaha.104.529511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012256566
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1161/circulationaha.105.521450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000306762
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1161/circulationaha.105.570648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046352388
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1161/circulationaha.106.178458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052710337
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1161/circulationaha.107.727826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022228
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1161/hc0402.102975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853393
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1161/hc2301.092121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048761288
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1536/ihj.37.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025992923
274 rdf:type schema:CreativeWork
275 https://doi.org/10.7326/0003-4819-135-9-200111060-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073705183
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
278 schema:name Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
281 schema:name Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124 W Carson St., 90502, Torrance, CA, USA
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...