Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

Akira Sato, Toshihiro Nozato, Hiroyuki Hikita, Shinsuke Miyazaki, Yoshihide Takahashi, Taishi Kuwahara, Atsushi Takahashi, Michiaki Hiroe, Kazutaka Aonuma

ABSTRACT

BACKGROUND: To compare the accuracy of combined 64-slice computed tomography angiography (CTA) and stress nuclear myocardial perfusion imaging (MPI) in the noninvasive detection of coronary artery disease (CAD) with that of 64-slice CTA alone. METHODS AND RESULTS: One hundred thirty symptomatic patients with suspected CAD underwent both 64-slice CTA and stress thallium-201 MPI before invasive coronary angiography (ICA). Coronary lesions with >or=50% luminal narrowing were considered as significant stenoses on CTA and ICA. Of 390 arteries in 130 patients, 54 (14%) were nonevaluable by CTA due to severe calcifications, motion artifacts, and/or poor opacification. All nonevaluable arteries were considered positive. The sensitivity, specificity, PPV and NPV were 95%, 80%, 69%, and 97%, respectively, for CTA alone and 94%, 92%, 85%, and 97%, respectively, for CTA with stress nuclear MPI for all nonevaluable arteries on CTA. Per-patient analysis showed significant increase in specificity and PPV. The majority (75%, 9/12) of nonevaluable severely calcified vessels in the left anterior descending artery were positive on stress nuclear MPI, whereas the majority (89%, 8/9) of nonevaluable vessels with motion artifacts in the right coronary artery were negative. CONCLUSIONS: Combined CTA and stress nuclear MPI provide improved diagnostic accuracy for the noninvasive detection of CAD. More... »

PAGES

19-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12350-009-9150-5

DOI

http://dx.doi.org/10.1007/s12350-009-9150-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052860040

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19777317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Cardiovascular Division, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Akira", 
        "id": "sg:person.0717074353.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717074353.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yokosuka Kyosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417369.e", 
          "name": [
            "Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nozato", 
        "givenName": "Toshihiro", 
        "id": "sg:person.0677360006.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677360006.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yokosuka Kyosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417369.e", 
          "name": [
            "Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hikita", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.01243237131.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243237131.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yokosuka Kyosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417369.e", 
          "name": [
            "Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyazaki", 
        "givenName": "Shinsuke", 
        "id": "sg:person.01214304352.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214304352.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yokosuka Kyosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417369.e", 
          "name": [
            "Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Yoshihide", 
        "id": "sg:person.01100055752.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100055752.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yokosuka Kyosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417369.e", 
          "name": [
            "Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuwahara", 
        "givenName": "Taishi", 
        "id": "sg:person.0763627352.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763627352.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yokosuka Kyosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417369.e", 
          "name": [
            "Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Atsushi", 
        "id": "sg:person.07723105632.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07723105632.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Department of Cardiology, International Medical Center of Japan, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiroe", 
        "givenName": "Michiaki", 
        "id": "sg:person.0714645765.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714645765.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Cardiovascular Division, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aonuma", 
        "givenName": "Kazutaka", 
        "id": "sg:person.0633316506.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633316506.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0735-1097(98)00177-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000440051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.97.6.535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001546387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.10.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009161565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2005.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010678284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.06.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018126510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehi261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018456617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm197906143002402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.037606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019640521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1067/mnc.2000.107426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021399646", 
          "https://doi.org/10.1067/mnc.2000.107426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.05.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021438565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0806576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032035217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.533471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037489913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0402.102975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.042481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044271788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2005.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048637306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.96.10.3390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063338115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077094734", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02", 
    "datePublishedReg": "2010-02-01", 
    "description": "BACKGROUND: To compare the accuracy of combined 64-slice computed tomography angiography (CTA) and stress nuclear myocardial perfusion imaging (MPI) in the noninvasive detection of coronary artery disease (CAD) with that of 64-slice CTA alone.\nMETHODS AND RESULTS: One hundred thirty symptomatic patients with suspected CAD underwent both 64-slice CTA and stress thallium-201 MPI before invasive coronary angiography (ICA). Coronary lesions with >or=50% luminal narrowing were considered as significant stenoses on CTA and ICA. Of 390 arteries in 130 patients, 54 (14%) were nonevaluable by CTA due to severe calcifications, motion artifacts, and/or poor opacification. All nonevaluable arteries were considered positive. The sensitivity, specificity, PPV and NPV were 95%, 80%, 69%, and 97%, respectively, for CTA alone and 94%, 92%, 85%, and 97%, respectively, for CTA with stress nuclear MPI for all nonevaluable arteries on CTA. Per-patient analysis showed significant increase in specificity and PPV. The majority (75%, 9/12) of nonevaluable severely calcified vessels in the left anterior descending artery were positive on stress nuclear MPI, whereas the majority (89%, 8/9) of nonevaluable vessels with motion artifacts in the right coronary artery were negative.\nCONCLUSIONS: Combined CTA and stress nuclear MPI provide improved diagnostic accuracy for the noninvasive detection of CAD.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12350-009-9150-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1106202", 
        "issn": [
          "1071-3581", 
          "1532-6551"
        ], 
        "name": "Journal of Nuclear Cardiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease", 
    "pagination": "19-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fbc9a317782a6cd2bd59437646ddf3f2d9045fc3e49a34f2bfec34b5a6a6ac02"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19777317"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9423534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12350-009-9150-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052860040"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12350-009-9150-5", 
      "https://app.dimensions.ai/details/publication/pub.1052860040"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12350-009-9150-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-009-9150-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-009-9150-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-009-9150-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-009-9150-5'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      62 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12350-009-9150-5 schema:about N022e551fb124409dae0db8424c8b1f99
2 N032c848c4ddf4f3c914659e0cd9901f7
3 N36f227275aac4446ba5ba65201b194f1
4 N48f06e3ef36644e99b3ca101f6180735
5 N6f838c401762416da6614bbf83593990
6 N72a6c7f59b8d48d4a326f50f4d8dcc7a
7 N84a7ca585f20443eb4cbe92722e6507e
8 Nb706b7e644e740a3a0fa3d01db3294cc
9 Nb7e361c211ef433eb3083462675fb693
10 Nb9e306073d574fdd83f7f942b6910306
11 Nba846962e25544d1a2bb2b9bee7ce60c
12 Nc6dd9ae941a24af3b90317b4de37e15e
13 Nee74fc31c2084972821aef29e8a63815
14 Nf99d2a98c05b4310a236610445cef725
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N5e952409cd44418e861ab86efb4ca39c
18 schema:citation sg:pub.10.1067/mnc.2000.107426
19 https://app.dimensions.ai/details/publication/pub.1077094734
20 https://doi.org/10.1016/j.ahj.2005.03.022
21 https://doi.org/10.1016/j.amjcard.2005.08.050
22 https://doi.org/10.1016/j.jacc.2004.06.042
23 https://doi.org/10.1016/j.jacc.2005.05.056
24 https://doi.org/10.1016/j.jacc.2006.05.080
25 https://doi.org/10.1016/j.jacc.2006.10.069
26 https://doi.org/10.1016/j.jacc.2007.07.007
27 https://doi.org/10.1016/s0735-1097(98)00177-6
28 https://doi.org/10.1056/nejm197906143002402
29 https://doi.org/10.1056/nejmoa0806576
30 https://doi.org/10.1093/eurheartj/ehi261
31 https://doi.org/10.1161/01.cir.96.10.3390
32 https://doi.org/10.1161/01.cir.97.6.535
33 https://doi.org/10.1161/circulationaha.105.533471
34 https://doi.org/10.1161/hc0402.102975
35 https://doi.org/10.2967/jnumed.106.037606
36 https://doi.org/10.2967/jnumed.107.042481
37 schema:datePublished 2010-02
38 schema:datePublishedReg 2010-02-01
39 schema:description BACKGROUND: To compare the accuracy of combined 64-slice computed tomography angiography (CTA) and stress nuclear myocardial perfusion imaging (MPI) in the noninvasive detection of coronary artery disease (CAD) with that of 64-slice CTA alone. METHODS AND RESULTS: One hundred thirty symptomatic patients with suspected CAD underwent both 64-slice CTA and stress thallium-201 MPI before invasive coronary angiography (ICA). Coronary lesions with >or=50% luminal narrowing were considered as significant stenoses on CTA and ICA. Of 390 arteries in 130 patients, 54 (14%) were nonevaluable by CTA due to severe calcifications, motion artifacts, and/or poor opacification. All nonevaluable arteries were considered positive. The sensitivity, specificity, PPV and NPV were 95%, 80%, 69%, and 97%, respectively, for CTA alone and 94%, 92%, 85%, and 97%, respectively, for CTA with stress nuclear MPI for all nonevaluable arteries on CTA. Per-patient analysis showed significant increase in specificity and PPV. The majority (75%, 9/12) of nonevaluable severely calcified vessels in the left anterior descending artery were positive on stress nuclear MPI, whereas the majority (89%, 8/9) of nonevaluable vessels with motion artifacts in the right coronary artery were negative. CONCLUSIONS: Combined CTA and stress nuclear MPI provide improved diagnostic accuracy for the noninvasive detection of CAD.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N0ce75574c235498ab9865a2b69cfc9ed
44 Nda49d26d14464d46ad258423f7fceb14
45 sg:journal.1106202
46 schema:name Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease
47 schema:pagination 19-26
48 schema:productId N274b2adcd6eb44db9073f8a1df0ba32d
49 N3433cee4840b49ab8105655ccba35bbb
50 N36c6338402424ba79e4e59aaf33bd417
51 N727101f54429438aa5a30fea51741b14
52 Nee9e6304a3b04de28e7be097d7876d54
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052860040
54 https://doi.org/10.1007/s12350-009-9150-5
55 schema:sdDatePublished 2019-04-11T09:34
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nf7f060eb2abb49c29322e309d2ddd8f2
58 schema:url http://link.springer.com/10.1007%2Fs12350-009-9150-5
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N022e551fb124409dae0db8424c8b1f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Image Enhancement
64 rdf:type schema:DefinedTerm
65 N032c848c4ddf4f3c914659e0cd9901f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Female
67 rdf:type schema:DefinedTerm
68 N04dd8ac43aed48b08b7e19067cca9478 rdf:first sg:person.01100055752.31
69 rdf:rest N0cc43dc7283d48b9971c53b124363c47
70 N0cc43dc7283d48b9971c53b124363c47 rdf:first sg:person.0763627352.23
71 rdf:rest Neaec4da9b29c4cf7a2ad43834c3cdbf8
72 N0ce75574c235498ab9865a2b69cfc9ed schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N1a5cea8d4134492297fa71bef410ce46 rdf:first sg:person.0677360006.66
75 rdf:rest Nc4f8bde5621243198c41018aba5ac1b7
76 N20842d2eab004fe2b8dc3ffb788e6091 rdf:first sg:person.0633316506.46
77 rdf:rest rdf:nil
78 N274b2adcd6eb44db9073f8a1df0ba32d schema:name dimensions_id
79 schema:value pub.1052860040
80 rdf:type schema:PropertyValue
81 N3433cee4840b49ab8105655ccba35bbb schema:name readcube_id
82 schema:value fbc9a317782a6cd2bd59437646ddf3f2d9045fc3e49a34f2bfec34b5a6a6ac02
83 rdf:type schema:PropertyValue
84 N36c6338402424ba79e4e59aaf33bd417 schema:name nlm_unique_id
85 schema:value 9423534
86 rdf:type schema:PropertyValue
87 N36f227275aac4446ba5ba65201b194f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Reproducibility of Results
89 rdf:type schema:DefinedTerm
90 N42adc9b4ad40461985aa71fa3e4fb6da rdf:first sg:person.0714645765.11
91 rdf:rest N20842d2eab004fe2b8dc3ffb788e6091
92 N48f06e3ef36644e99b3ca101f6180735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Tomography, X-Ray Computed
94 rdf:type schema:DefinedTerm
95 N5e952409cd44418e861ab86efb4ca39c rdf:first sg:person.0717074353.90
96 rdf:rest N1a5cea8d4134492297fa71bef410ce46
97 N6f838c401762416da6614bbf83593990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Male
99 rdf:type schema:DefinedTerm
100 N727101f54429438aa5a30fea51741b14 schema:name pubmed_id
101 schema:value 19777317
102 rdf:type schema:PropertyValue
103 N72a6c7f59b8d48d4a326f50f4d8dcc7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N84a7ca585f20443eb4cbe92722e6507e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Aged
108 rdf:type schema:DefinedTerm
109 Nb706b7e644e740a3a0fa3d01db3294cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Tomography, Emission-Computed, Single-Photon
111 rdf:type schema:DefinedTerm
112 Nb7e361c211ef433eb3083462675fb693 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Sensitivity and Specificity
114 rdf:type schema:DefinedTerm
115 Nb9e306073d574fdd83f7f942b6910306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Prevalence
117 rdf:type schema:DefinedTerm
118 Nba846962e25544d1a2bb2b9bee7ce60c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Coronary Artery Disease
120 rdf:type schema:DefinedTerm
121 Nc4f8bde5621243198c41018aba5ac1b7 rdf:first sg:person.01243237131.01
122 rdf:rest Ne7e6bffac05a4b67962651fb98694a0b
123 Nc6dd9ae941a24af3b90317b4de37e15e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Japan
125 rdf:type schema:DefinedTerm
126 Nda49d26d14464d46ad258423f7fceb14 schema:volumeNumber 17
127 rdf:type schema:PublicationVolume
128 Ne7e6bffac05a4b67962651fb98694a0b rdf:first sg:person.01214304352.96
129 rdf:rest N04dd8ac43aed48b08b7e19067cca9478
130 Neaec4da9b29c4cf7a2ad43834c3cdbf8 rdf:first sg:person.07723105632.44
131 rdf:rest N42adc9b4ad40461985aa71fa3e4fb6da
132 Nee74fc31c2084972821aef29e8a63815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Myocardial Perfusion Imaging
134 rdf:type schema:DefinedTerm
135 Nee9e6304a3b04de28e7be097d7876d54 schema:name doi
136 schema:value 10.1007/s12350-009-9150-5
137 rdf:type schema:PropertyValue
138 Nf7f060eb2abb49c29322e309d2ddd8f2 schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nf99d2a98c05b4310a236610445cef725 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Coronary Angiography
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
147 schema:name Cardiorespiratory Medicine and Haematology
148 rdf:type schema:DefinedTerm
149 sg:journal.1106202 schema:issn 1071-3581
150 1532-6551
151 schema:name Journal of Nuclear Cardiology
152 rdf:type schema:Periodical
153 sg:person.01100055752.31 schema:affiliation https://www.grid.ac/institutes/grid.417369.e
154 schema:familyName Takahashi
155 schema:givenName Yoshihide
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100055752.31
157 rdf:type schema:Person
158 sg:person.01214304352.96 schema:affiliation https://www.grid.ac/institutes/grid.417369.e
159 schema:familyName Miyazaki
160 schema:givenName Shinsuke
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214304352.96
162 rdf:type schema:Person
163 sg:person.01243237131.01 schema:affiliation https://www.grid.ac/institutes/grid.417369.e
164 schema:familyName Hikita
165 schema:givenName Hiroyuki
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243237131.01
167 rdf:type schema:Person
168 sg:person.0633316506.46 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
169 schema:familyName Aonuma
170 schema:givenName Kazutaka
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633316506.46
172 rdf:type schema:Person
173 sg:person.0677360006.66 schema:affiliation https://www.grid.ac/institutes/grid.417369.e
174 schema:familyName Nozato
175 schema:givenName Toshihiro
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677360006.66
177 rdf:type schema:Person
178 sg:person.0714645765.11 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
179 schema:familyName Hiroe
180 schema:givenName Michiaki
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714645765.11
182 rdf:type schema:Person
183 sg:person.0717074353.90 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
184 schema:familyName Sato
185 schema:givenName Akira
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717074353.90
187 rdf:type schema:Person
188 sg:person.0763627352.23 schema:affiliation https://www.grid.ac/institutes/grid.417369.e
189 schema:familyName Kuwahara
190 schema:givenName Taishi
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763627352.23
192 rdf:type schema:Person
193 sg:person.07723105632.44 schema:affiliation https://www.grid.ac/institutes/grid.417369.e
194 schema:familyName Takahashi
195 schema:givenName Atsushi
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07723105632.44
197 rdf:type schema:Person
198 sg:pub.10.1067/mnc.2000.107426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021399646
199 https://doi.org/10.1067/mnc.2000.107426
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1077094734 schema:CreativeWork
202 https://doi.org/10.1016/j.ahj.2005.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048637306
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.amjcard.2005.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010678284
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jacc.2004.06.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018126510
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jacc.2006.05.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021438565
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jacc.2006.10.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009161565
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.jacc.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037489913
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0735-1097(98)00177-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000440051
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1056/nejm197906143002402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019126751
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1056/nejmoa0806576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032035217
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/eurheartj/ehi261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018456617
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1161/01.cir.96.10.3390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063338115
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1161/01.cir.97.6.535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001546387
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1161/circulationaha.105.533471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983112
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1161/hc0402.102975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853393
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2967/jnumed.106.037606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019640521
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2967/jnumed.107.042481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044271788
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.20515.33 schema:alternateName University of Tsukuba
237 schema:name Cardiovascular Division, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Ibaraki, Japan
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.417369.e schema:alternateName Yokosuka Kyosai Hospital
240 schema:name Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.45203.30 schema:alternateName National Center For Global Health and Medicine
243 schema:name Department of Cardiology, International Medical Center of Japan, Tokyo, Japan
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...