A Quasi-strictly Non-volterra Quadratic Stochastic Operator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-26

AUTHORS

A. J. M. Hardin, U. A. Rozikov

ABSTRACT

We consider a four-parameter family of non-Volterra operators defined on the two-dimensional simplex and show that, with one exception, each such operator has a unique fixed point. Depending on the parameters, we establish the type of this fixed point. We study the set of ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-limiting points for each trajectory and show that this set can be a single point or can contain a 2-periodic trajectory. More... »

PAGES

1013-1029

References to SciGraph publications

  • 2014-01. Nonergodic Quadratic Operators for a Two-Sex Population in UKRAINIAN MATHEMATICAL JOURNAL
  • 2016-07-30. On the Equiprobable Strictly Non-Volterra Quadratic Stochastic Operators in QUALITATIVE THEORY OF DYNAMICAL SYSTEMS
  • 2007. Discrete Dynamical Systems in NONE
  • 2011-11-29. Volterra quadratic stochastic operators of a two-sex population in UKRAINIAN MATHEMATICAL JOURNAL
  • 2011-10. On a class of separable quadratic stochastic operators in LOBACHEVSKII JOURNAL OF MATHEMATICS
  • 1992. Mathematical Structures in Population Genetics in NONE
  • 2008-04. F-quadratic stochastic operators in MATHEMATICAL NOTES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12346-019-00325-9

    DOI

    http://dx.doi.org/10.1007/s12346-019-00325-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113006146


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oklahoma, 660 Parrington Oval, 73019, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "University of Oklahoma, 660 Parrington Oval, 73019, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hardin", 
            "givenName": "A. J. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics, 81, Mirzo Ulug\u2019bek str., 100125, Tashkent, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Mathematics, 81, Mirzo Ulug\u2019bek str., 100125, Tashkent, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozikov", 
            "givenName": "U. A.", 
            "id": "sg:person.014213263324.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-36776-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038829944", 
              "https://doi.org/10.1007/3-540-36776-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-76211-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710797", 
              "https://doi.org/10.1007/978-3-642-76211-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11253-011-0568-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030330068", 
              "https://doi.org/10.1007/s11253-011-0568-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1995080211040196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050697730", 
              "https://doi.org/10.1134/s1995080211040196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11253-014-0858-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049685799", 
              "https://doi.org/10.1007/s11253-014-0858-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12346-016-0209-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028667938", 
              "https://doi.org/10.1007/s12346-016-0209-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0001434608030280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002846618", 
              "https://doi.org/10.1134/s0001434608030280"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-26", 
        "datePublishedReg": "2019-03-26", 
        "description": "We consider a four-parameter family of non-Volterra operators defined on the two-dimensional simplex and show that, with one exception, each such operator has a unique fixed point. Depending on the parameters, we establish the type of this fixed point. We study the set of \u03c9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\omega $$\\end{document}-limiting points for each trajectory and show that this set can be a single point or can contain a 2-periodic trajectory.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12346-019-00325-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6624561", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136690", 
            "issn": [
              "1575-5460", 
              "1662-3592"
            ], 
            "name": "Qualitative Theory of Dynamical Systems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "two-dimensional simplex", 
          "quadratic stochastic operators", 
          "four-parameter family", 
          "stochastic operators", 
          "such operators", 
          "operators", 
          "set", 
          "point", 
          "single point", 
          "Quasi", 
          "trajectories", 
          "simplex", 
          "parameters", 
          "family", 
          "types", 
          "exception", 
          "non-Volterra operators", 
          "Non-volterra Quadratic Stochastic Operator"
        ], 
        "name": "A Quasi-strictly Non-volterra Quadratic Stochastic Operator", 
        "pagination": "1013-1029", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113006146"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12346-019-00325-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12346-019-00325-9", 
          "https://app.dimensions.ai/details/publication/pub.1113006146"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_815.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12346-019-00325-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12346-019-00325-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12346-019-00325-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12346-019-00325-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12346-019-00325-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      22 PREDICATES      50 URIs      35 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12346-019-00325-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N56d3a0ae5a21485e8a03d281e6d3332d
    4 schema:citation sg:pub.10.1007/3-540-36776-4
    5 sg:pub.10.1007/978-3-642-76211-6
    6 sg:pub.10.1007/s11253-011-0568-y
    7 sg:pub.10.1007/s11253-014-0858-2
    8 sg:pub.10.1007/s12346-016-0209-9
    9 sg:pub.10.1134/s0001434608030280
    10 sg:pub.10.1134/s1995080211040196
    11 schema:datePublished 2019-03-26
    12 schema:datePublishedReg 2019-03-26
    13 schema:description We consider a four-parameter family of non-Volterra operators defined on the two-dimensional simplex and show that, with one exception, each such operator has a unique fixed point. Depending on the parameters, we establish the type of this fixed point. We study the set of ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-limiting points for each trajectory and show that this set can be a single point or can contain a 2-periodic trajectory.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N0a4d17e83e6e45abb177df247ea9c28b
    18 N149e8de41a494b0484f12c67915e97a7
    19 sg:journal.1136690
    20 schema:keywords Non-volterra Quadratic Stochastic Operator
    21 Quasi
    22 exception
    23 family
    24 four-parameter family
    25 non-Volterra operators
    26 operators
    27 parameters
    28 point
    29 quadratic stochastic operators
    30 set
    31 simplex
    32 single point
    33 stochastic operators
    34 such operators
    35 trajectories
    36 two-dimensional simplex
    37 types
    38 schema:name A Quasi-strictly Non-volterra Quadratic Stochastic Operator
    39 schema:pagination 1013-1029
    40 schema:productId N28a072e6a1414da4b83b2f6f3623bc9c
    41 N5404573b91d346e99a3e84cc5f903df1
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113006146
    43 https://doi.org/10.1007/s12346-019-00325-9
    44 schema:sdDatePublished 2021-11-01T18:35
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N3a04859d413143f0b24a076e492c39a2
    47 schema:url https://doi.org/10.1007/s12346-019-00325-9
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N0a4d17e83e6e45abb177df247ea9c28b schema:issueNumber 3
    52 rdf:type schema:PublicationIssue
    53 N149e8de41a494b0484f12c67915e97a7 schema:volumeNumber 18
    54 rdf:type schema:PublicationVolume
    55 N28a072e6a1414da4b83b2f6f3623bc9c schema:name dimensions_id
    56 schema:value pub.1113006146
    57 rdf:type schema:PropertyValue
    58 N32aa850695b940be92d16e7de6c96c62 schema:affiliation grid-institutes:grid.266900.b
    59 schema:familyName Hardin
    60 schema:givenName A. J. M.
    61 rdf:type schema:Person
    62 N3a04859d413143f0b24a076e492c39a2 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N5404573b91d346e99a3e84cc5f903df1 schema:name doi
    65 schema:value 10.1007/s12346-019-00325-9
    66 rdf:type schema:PropertyValue
    67 N56d3a0ae5a21485e8a03d281e6d3332d rdf:first N32aa850695b940be92d16e7de6c96c62
    68 rdf:rest Nf48d353e4abc496c823f1cac366d483c
    69 Nf48d353e4abc496c823f1cac366d483c rdf:first sg:person.014213263324.92
    70 rdf:rest rdf:nil
    71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Pure Mathematics
    76 rdf:type schema:DefinedTerm
    77 sg:grant.6624561 http://pending.schema.org/fundedItem sg:pub.10.1007/s12346-019-00325-9
    78 rdf:type schema:MonetaryGrant
    79 sg:journal.1136690 schema:issn 1575-5460
    80 1662-3592
    81 schema:name Qualitative Theory of Dynamical Systems
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.014213263324.92 schema:affiliation grid-institutes:None
    85 schema:familyName Rozikov
    86 schema:givenName U. A.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92
    88 rdf:type schema:Person
    89 sg:pub.10.1007/3-540-36776-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038829944
    90 https://doi.org/10.1007/3-540-36776-4
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-3-642-76211-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710797
    93 https://doi.org/10.1007/978-3-642-76211-6
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s11253-011-0568-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030330068
    96 https://doi.org/10.1007/s11253-011-0568-y
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s11253-014-0858-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049685799
    99 https://doi.org/10.1007/s11253-014-0858-2
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s12346-016-0209-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028667938
    102 https://doi.org/10.1007/s12346-016-0209-9
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1134/s0001434608030280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002846618
    105 https://doi.org/10.1134/s0001434608030280
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1134/s1995080211040196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050697730
    108 https://doi.org/10.1134/s1995080211040196
    109 rdf:type schema:CreativeWork
    110 grid-institutes:None schema:alternateName Institute of Mathematics, 81, Mirzo Ulug’bek str., 100125, Tashkent, Uzbekistan
    111 schema:name Institute of Mathematics, 81, Mirzo Ulug’bek str., 100125, Tashkent, Uzbekistan
    112 rdf:type schema:Organization
    113 grid-institutes:grid.266900.b schema:alternateName University of Oklahoma, 660 Parrington Oval, 73019, Norman, OK, USA
    114 schema:name University of Oklahoma, 660 Parrington Oval, 73019, Norman, OK, USA
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...