On Families of Periodic Orbits in the Restricted Three-Body Problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Seongchan Kim

ABSTRACT

Since Poincaré, periodic orbits have been one of the most important objects in dynamical systems. However, searching them is in general quite difficult. A common way to find them is to construct families of periodic orbits which start at obvious periodic orbits. On the other hand, given two periodic orbits one might ask if they are connected by an orbit cylinder, i.e., by a one-parameter family of periodic orbits. In this article we study this question for a certain class of periodic orbits in the planar circular restricted three-body problem. Our strategy is to compare the Cieliebak–Frauenfelder–van Koert invariants which are obstructions to the existence of an orbit cylinder. More... »

PAGES

201-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12346-018-0288-x

DOI

http://dx.doi.org/10.1007/s12346-018-0288-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107055483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 14, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seongchan", 
        "id": "sg:person.012334350464.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012334350464.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/andp.19223731102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006590536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2004.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032269488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110901733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051137386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004112000515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053890023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.437932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058015961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/109672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/29/4/1212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004117000548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090882543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354717040050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090954024", 
          "https://doi.org/10.1134/s1560354717040050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2018.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104368326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793525319500614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107048552"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Since Poincar\u00e9, periodic orbits have been one of the most important objects in dynamical systems. However, searching them is in general quite difficult. A common way to find them is to construct families of periodic orbits which start at obvious periodic orbits. On the other hand, given two periodic orbits one might ask if they are connected by an orbit cylinder, i.e., by a one-parameter family of periodic orbits. In this article we study this question for a certain class of periodic orbits in the planar circular restricted three-body problem. Our strategy is to compare the Cieliebak\u2013Frauenfelder\u2013van Koert invariants which are obstructions to the existence of an orbit cylinder.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12346-018-0288-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136690", 
        "issn": [
          "1575-5460", 
          "1662-3592"
        ], 
        "name": "Qualitative Theory of Dynamical Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "On Families of Periodic Orbits in the Restricted Three-Body Problem", 
    "pagination": "201-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7dd1c487cb634ca08ade5b35afde11764560e325b7d6eb8133fedbabc4c178e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12346-018-0288-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107055483"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12346-018-0288-x", 
      "https://app.dimensions.ai/details/publication/pub.1107055483"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72836_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12346-018-0288-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0288-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0288-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0288-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0288-x'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12346-018-0288-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N286dfa58dafe4f98a5f3296881769d97
4 schema:citation sg:pub.10.1134/s1560354717040050
5 https://doi.org/10.1002/andp.19223731102
6 https://doi.org/10.1016/j.geomphys.2018.05.026
7 https://doi.org/10.1016/j.physd.2004.05.006
8 https://doi.org/10.1017/s0305004112000515
9 https://doi.org/10.1017/s0305004117000548
10 https://doi.org/10.1063/1.437932
11 https://doi.org/10.1086/109672
12 https://doi.org/10.1088/0951-7715/29/4/1212
13 https://doi.org/10.1142/s1793525319500614
14 https://doi.org/10.1515/9783110901733
15 https://doi.org/10.2307/2373181
16 schema:datePublished 2019-04
17 schema:datePublishedReg 2019-04-01
18 schema:description Since Poincaré, periodic orbits have been one of the most important objects in dynamical systems. However, searching them is in general quite difficult. A common way to find them is to construct families of periodic orbits which start at obvious periodic orbits. On the other hand, given two periodic orbits one might ask if they are connected by an orbit cylinder, i.e., by a one-parameter family of periodic orbits. In this article we study this question for a certain class of periodic orbits in the planar circular restricted three-body problem. Our strategy is to compare the Cieliebak–Frauenfelder–van Koert invariants which are obstructions to the existence of an orbit cylinder.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N4ca4c0e1d9284dffb4e21def40ba3ef9
23 N9fea3922043c4d349de8641de45d08d9
24 sg:journal.1136690
25 schema:name On Families of Periodic Orbits in the Restricted Three-Body Problem
26 schema:pagination 201-232
27 schema:productId N16ccc8e64423481cbb1229d83f081147
28 N2d57439058114565b0e795d626014bb1
29 N5a109adb25624d20933d1e7f0a49e448
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107055483
31 https://doi.org/10.1007/s12346-018-0288-x
32 schema:sdDatePublished 2019-04-11T12:52
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N0402191413a0474186f513c493920e5f
35 schema:url https://link.springer.com/10.1007%2Fs12346-018-0288-x
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0402191413a0474186f513c493920e5f schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N16ccc8e64423481cbb1229d83f081147 schema:name readcube_id
42 schema:value e7dd1c487cb634ca08ade5b35afde11764560e325b7d6eb8133fedbabc4c178e
43 rdf:type schema:PropertyValue
44 N286dfa58dafe4f98a5f3296881769d97 rdf:first sg:person.012334350464.55
45 rdf:rest rdf:nil
46 N2d57439058114565b0e795d626014bb1 schema:name doi
47 schema:value 10.1007/s12346-018-0288-x
48 rdf:type schema:PropertyValue
49 N4ca4c0e1d9284dffb4e21def40ba3ef9 schema:volumeNumber 18
50 rdf:type schema:PublicationVolume
51 N5a109adb25624d20933d1e7f0a49e448 schema:name dimensions_id
52 schema:value pub.1107055483
53 rdf:type schema:PropertyValue
54 N9fea3922043c4d349de8641de45d08d9 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136690 schema:issn 1575-5460
63 1662-3592
64 schema:name Qualitative Theory of Dynamical Systems
65 rdf:type schema:Periodical
66 sg:person.012334350464.55 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
67 schema:familyName Kim
68 schema:givenName Seongchan
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012334350464.55
70 rdf:type schema:Person
71 sg:pub.10.1134/s1560354717040050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090954024
72 https://doi.org/10.1134/s1560354717040050
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1002/andp.19223731102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006590536
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/j.geomphys.2018.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104368326
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/j.physd.2004.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032269488
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1017/s0305004112000515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053890023
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1017/s0305004117000548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090882543
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1063/1.437932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058015961
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1086/109672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448293
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1088/0951-7715/29/4/1212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110553
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1142/s1793525319500614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107048552
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1515/9783110901733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051137386
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2307/2373181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899762
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
97 schema:name Universität Augsburg, Universitätsstrasse 14, 86159, Augsburg, Germany
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...