Higher Order Melnikov Functions for Studying Limit Cycles of Some Perturbed Elliptic Hamiltonian Vector Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Rasoul Asheghi, Arefeh Nabavi

ABSTRACT

In this paper, we study the number of limit cycles in the perturbed Hamiltonian system dH=εF1+ε2F2+ε3F3 with Fi, the vector valued homogeneous polynomials of degree i and 4-i for i=1,2,3, and small positive parameter ε. The Hamiltonian function has the form H=y2/2+U(x), where U is a univariate polynomial of degree four without symmetry. We compute higher order Melnikov functions until we obtain reversible perturbations. Then we find the upper bounds for the number of limit cycles that can bifurcate from the periodic orbits of dH=0. More... »

PAGES

289-313

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12346-018-0284-1

DOI

http://dx.doi.org/10.1007/s12346-018-0284-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106930278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Isfahan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411751.7", 
          "name": [
            "Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asheghi", 
        "givenName": "Rasoul", 
        "id": "sg:person.01210263476.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210263476.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Isfahan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411751.7", 
          "name": [
            "Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nabavi", 
        "givenName": "Arefeh", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009205126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-4497(00)01069-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018660962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2015.10.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020487811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2016.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035551747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1994.1115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035909676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041478825", 
          "https://doi.org/10.1007/bf01759638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700008725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053793822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700008725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053793822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004199003795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053949924"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, we study the number of limit cycles in the perturbed Hamiltonian system dH=\u03b5F1+\u03b52F2+\u03b53F3 with Fi, the vector valued homogeneous polynomials of degree i and 4-i for i=1,2,3, and small positive parameter \u03b5. The Hamiltonian function has the form H=y2/2+U(x), where U is a univariate polynomial of degree four without symmetry. We compute higher order Melnikov functions until we obtain reversible perturbations. Then we find the upper bounds for the number of limit cycles that can bifurcate from the periodic orbits of dH=0.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12346-018-0284-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136690", 
        "issn": [
          "1575-5460", 
          "1662-3592"
        ], 
        "name": "Qualitative Theory of Dynamical Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Higher Order Melnikov Functions for Studying Limit Cycles of Some Perturbed Elliptic Hamiltonian Vector Fields", 
    "pagination": "289-313", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4fa300bb7628003f02205d68444a1057582217941d1391501941435aa880d677"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12346-018-0284-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106930278"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12346-018-0284-1", 
      "https://app.dimensions.ai/details/publication/pub.1106930278"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72869_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12346-018-0284-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0284-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0284-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0284-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12346-018-0284-1'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12346-018-0284-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbf81d75eba604143ba4dd57b0d7b67c7
4 schema:citation sg:pub.10.1007/bf01759638
5 https://doi.org/10.1006/jdeq.1994.1115
6 https://doi.org/10.1006/jdeq.1999.3704
7 https://doi.org/10.1016/j.jde.2015.10.052
8 https://doi.org/10.1016/j.jmaa.2016.11.021
9 https://doi.org/10.1016/s0007-4497(00)01069-1
10 https://doi.org/10.1017/s0143385700008725
11 https://doi.org/10.1017/s0305004199003795
12 schema:datePublished 2019-04
13 schema:datePublishedReg 2019-04-01
14 schema:description In this paper, we study the number of limit cycles in the perturbed Hamiltonian system dH=εF1+ε2F2+ε3F3 with Fi, the vector valued homogeneous polynomials of degree i and 4-i for i=1,2,3, and small positive parameter ε. The Hamiltonian function has the form H=y2/2+U(x), where U is a univariate polynomial of degree four without symmetry. We compute higher order Melnikov functions until we obtain reversible perturbations. Then we find the upper bounds for the number of limit cycles that can bifurcate from the periodic orbits of dH=0.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N4403fcf8514440e5b94d194cfbf158ff
19 Ne026d2e9ccb747eb9434609528b141e8
20 sg:journal.1136690
21 schema:name Higher Order Melnikov Functions for Studying Limit Cycles of Some Perturbed Elliptic Hamiltonian Vector Fields
22 schema:pagination 289-313
23 schema:productId N30d1b7bdf87949d190f471490d8faf4b
24 Nd033d39943bc4d99ba583c9a89040692
25 Ndeebfeb5195a4850a24830408d0580c5
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106930278
27 https://doi.org/10.1007/s12346-018-0284-1
28 schema:sdDatePublished 2019-04-11T12:55
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N479378003aef43a7800775f9c2169122
31 schema:url https://link.springer.com/10.1007%2Fs12346-018-0284-1
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N04a484de3d544fb8b1ee2511db7d0609 rdf:first N0e768e8c865e4d969d10536e38f269b2
36 rdf:rest rdf:nil
37 N0e768e8c865e4d969d10536e38f269b2 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
38 schema:familyName Nabavi
39 schema:givenName Arefeh
40 rdf:type schema:Person
41 N30d1b7bdf87949d190f471490d8faf4b schema:name doi
42 schema:value 10.1007/s12346-018-0284-1
43 rdf:type schema:PropertyValue
44 N4403fcf8514440e5b94d194cfbf158ff schema:volumeNumber 18
45 rdf:type schema:PublicationVolume
46 N479378003aef43a7800775f9c2169122 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nbf81d75eba604143ba4dd57b0d7b67c7 rdf:first sg:person.01210263476.72
49 rdf:rest N04a484de3d544fb8b1ee2511db7d0609
50 Nd033d39943bc4d99ba583c9a89040692 schema:name readcube_id
51 schema:value 4fa300bb7628003f02205d68444a1057582217941d1391501941435aa880d677
52 rdf:type schema:PropertyValue
53 Ndeebfeb5195a4850a24830408d0580c5 schema:name dimensions_id
54 schema:value pub.1106930278
55 rdf:type schema:PropertyValue
56 Ne026d2e9ccb747eb9434609528b141e8 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136690 schema:issn 1575-5460
65 1662-3592
66 schema:name Qualitative Theory of Dynamical Systems
67 rdf:type schema:Periodical
68 sg:person.01210263476.72 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
69 schema:familyName Asheghi
70 schema:givenName Rasoul
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210263476.72
72 rdf:type schema:Person
73 sg:pub.10.1007/bf01759638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478825
74 https://doi.org/10.1007/bf01759638
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1006/jdeq.1994.1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035909676
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1006/jdeq.1999.3704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009205126
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.jde.2015.10.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020487811
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.jmaa.2016.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035551747
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0007-4497(00)01069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018660962
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1017/s0143385700008725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053793822
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/s0305004199003795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053949924
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.411751.7 schema:alternateName Isfahan University of Technology
91 schema:name Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...