Relationship of Eating Patterns and Metabolic Parameters, and Teneligliptin Treatment: Interim Results from Post-marketing Surveillance in Japanese Type 2 Diabetes ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-05-17

AUTHORS

Takashi Kadowaki, Masakazu Haneda, Hiroshi Ito, Kazuyo Sasaki, Sonoe Hiraide, Miyuki Matsukawa, Makoto Ueno

ABSTRACT

IntroductionHealthy eating is a critical aspect of the prevention and management of type 2 diabetes (T2DM). Disrupted eating patterns can result in poor glucose control and increase the likelihood of diabetic complications. Teneligliptin inhibits dipeptidyl peptidase-4 activity for 24 h and suppresses postprandial hyperglycemia after all three daily meals. This interim analysis of data from the large-scale post-marketing surveillance of teneligliptin (RUBY) in Japan examined eating patterns and their relationship with metabolic parameters and diabetic complications. We also examined whether eating patterns affected safety and efficacy of teneligliptin.MethodsWe analyzed baseline data from survey forms collected in RUBY between May 2013 and June 2017, including patient characteristics, metabolic parameters, and eating patterns (eating three meals per day or not; timing of evening meal) before teneligliptin treatment was initiated. Safety and efficacy of 12 months’ teneligliptin (20–40 mg/day) treatment was assessed.ResultsData from 10,532 patients were available for analysis. Most patients who did not eat three meals per day (n =757) or who ate their evening meal after 10 PM (n =206) were 64 years old or younger. At baseline, glycated hemoglobin (HbA1c), fasting blood glucose, triglycerides, total and low-density lipoprotein cholesterol, body mass index, alanine aminotransferase, and aspartate aminotransferase levels were higher in those patients who did not eat three meals per day (p < 0.05) or who ate their evening meal late (p < 0.05). Diabetic complications were more common in patients who did not eat three meals per day. Treatment with teneligliptin reduced HbA1c over 6 or 12 months across all eating patterns, with a low incidence of adverse drug reactions.ConclusionsEating patterns may be associated with altered metabolic parameters and diabetic complications among Japanese patients with T2DM. Teneligliptin may be well tolerated and improve hyperglycemia in patients with T2DM irrespective of eating patterns.FundingMitsubishi Tanabe Pharma Corporation and Daiichi Sankyo Co. Ltd.Trial Registration NumberJapic CTI-153047. More... »

PAGES

817-831

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12325-018-0704-2

DOI

http://dx.doi.org/10.1007/s12325-018-0704-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104044083

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29777520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Combined Modality Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet, Healthy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dipeptidyl-Peptidase IV Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycated Hemoglobin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperglycemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypoglycemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypoglycemic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pyrazoles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thiazolidines", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadowaki", 
        "givenName": "Takashi", 
        "id": "sg:person.01353472360.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Corporation Kyousoukai, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Medicine, Asahikawa Medical University, Asahikawa, Japan", 
            "Medical Corporation Kyousoukai, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haneda", 
        "givenName": "Masakazu", 
        "id": "sg:person.01342044323.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342044323.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261356.5", 
          "name": [
            "Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ito", 
        "givenName": "Hiroshi", 
        "id": "sg:person.013440705734.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440705734.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.418306.8", 
          "name": [
            "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasaki", 
        "givenName": "Kazuyo", 
        "id": "sg:person.01335361505.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335361505.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.418306.8", 
          "name": [
            "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiraide", 
        "givenName": "Sonoe", 
        "id": "sg:person.016326663135.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326663135.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.418306.8", 
          "name": [
            "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsukawa", 
        "givenName": "Miyuki", 
        "id": "sg:person.014325424431.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325424431.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.418306.8", 
          "name": [
            "Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueno", 
        "givenName": "Makoto", 
        "id": "sg:person.013420536353.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420536353.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00535-015-1050-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032449418", 
          "https://doi.org/10.1007/s00535-015-1050-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-012-2534-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048718893", 
          "https://doi.org/10.1007/s00125-012-2534-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-016-3902-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028353778", 
          "https://doi.org/10.1007/s00125-016-3902-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40200-015-0147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019800554", 
          "https://doi.org/10.1186/s40200-015-0147-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011274307", 
          "https://doi.org/10.1038/nature09253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11892-015-0602-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026921846", 
          "https://doi.org/10.1007/s11892-015-0602-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-17", 
    "datePublishedReg": "2018-05-17", 
    "description": "IntroductionHealthy eating is a critical aspect of the prevention and management of type 2 diabetes (T2DM). Disrupted eating patterns can result in poor glucose control and increase the likelihood of diabetic complications. Teneligliptin inhibits dipeptidyl peptidase-4 activity for 24\u00a0h and suppresses postprandial hyperglycemia after all three daily meals. This interim analysis of data from the large-scale post-marketing surveillance of teneligliptin (RUBY) in Japan examined eating patterns and their relationship with metabolic parameters and diabetic complications. We also examined whether eating patterns affected safety and efficacy of teneligliptin.MethodsWe analyzed baseline data from survey forms collected in RUBY between May 2013 and June 2017, including patient characteristics, metabolic parameters, and eating patterns (eating three meals per day or not; timing of evening meal) before teneligliptin treatment was initiated. Safety and efficacy of 12\u00a0months\u2019 teneligliptin (20\u201340\u00a0mg/day) treatment was assessed.ResultsData from 10,532 patients were available for analysis. Most patients who did not eat three meals per day (n\u2009\u2009=757) or who ate their evening meal after\u00a010 PM (n\u2009\u2009=206) were 64\u00a0years old or younger. At baseline, glycated hemoglobin (HbA1c), fasting blood glucose, triglycerides, total and low-density lipoprotein cholesterol, body mass index, alanine aminotransferase, and aspartate aminotransferase levels were higher in those patients who did not eat three meals per day (p\u2009<\u20090.05) or who ate their evening meal late (p\u2009<\u20090.05). Diabetic complications were more common in patients who did not eat three meals per day. Treatment with teneligliptin reduced HbA1c over 6 or 12\u00a0months across all eating patterns, with a low incidence of adverse drug reactions.ConclusionsEating patterns may be associated with altered metabolic parameters and diabetic complications among Japanese patients with T2DM. Teneligliptin may be well tolerated and improve hyperglycemia in patients with T2DM irrespective of eating patterns.FundingMitsubishi Tanabe Pharma Corporation and Daiichi Sankyo Co. Ltd.Trial Registration NumberJapic CTI-153047.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12325-018-0704-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1096634", 
        "issn": [
          "0741-238X", 
          "1865-8652"
        ], 
        "name": "Advances in Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "diabetic complications", 
      "teneligliptin treatment", 
      "metabolic parameters", 
      "evening meal", 
      "low-density lipoprotein cholesterol", 
      "efficacy of teneligliptin", 
      "poor glucose control", 
      "Japanese type 2", 
      "body mass index", 
      "type 2 diabetes", 
      "adverse drug reactions", 
      "post-marketing surveillance", 
      "most patients", 
      "lipoprotein cholesterol", 
      "aminotransferase levels", 
      "post-market surveillance", 
      "patient characteristics", 
      "mass index", 
      "glucose control", 
      "drug reactions", 
      "blood glucose", 
      "postprandial hyperglycemia", 
      "Japanese patients", 
      "lower incidence", 
      "alanine aminotransferase", 
      "interim analysis", 
      "eating patterns", 
      "patients", 
      "complications", 
      "type 2", 
      "teneligliptin", 
      "daily meals", 
      "baseline data", 
      "T2DM", 
      "hyperglycemia", 
      "interim results", 
      "treatment", 
      "meal", 
      "months", 
      "efficacy", 
      "days", 
      "surveillance", 
      "survey form", 
      "safety", 
      "diabetes", 
      "ResultsData", 
      "triglycerides", 
      "MethodsWe", 
      "incidence", 
      "cholesterol", 
      "aminotransferase", 
      "baseline", 
      "prevention", 
      "hemoglobin", 
      "eating", 
      "inhibits", 
      "glucose", 
      "patterns", 
      "years", 
      "index", 
      "management", 
      "data", 
      "levels", 
      "control", 
      "likelihood", 
      "activity", 
      "relationship", 
      "analysis", 
      "critical aspects", 
      "PM", 
      "Japan", 
      "parameters", 
      "results", 
      "characteristics", 
      "Co. Ltd", 
      "aspects", 
      "Ltd", 
      "form", 
      "reaction", 
      "ruby", 
      "corporations"
    ], 
    "name": "Relationship of Eating Patterns and Metabolic Parameters, and Teneligliptin Treatment: Interim Results from Post-marketing Surveillance in Japanese Type 2 Diabetes Patients", 
    "pagination": "817-831", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104044083"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12325-018-0704-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29777520"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12325-018-0704-2", 
      "https://app.dimensions.ai/details/publication/pub.1104044083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_776.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12325-018-0704-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12325-018-0704-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12325-018-0704-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12325-018-0704-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12325-018-0704-2'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      129 URIs      115 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12325-018-0704-2 schema:about N20cf6bb9cbd940038b6afa7503d08115
2 N4d9a3e239d5e4a4ca985ed8ebbd64164
3 N64c617fb601745e4bd083be2adeaa77f
4 N6db8b47c3eb941daa94660b2a44fa684
5 N77a5f1de5f1448c6b4732c3210243ae0
6 N82e79f1a1a2b4d448bec06d31d8e1142
7 N8e9aaf7a02bd4802bf2e7e9dffc5d6dd
8 N979e40d0996140ac81dbb1dc7d3093c1
9 N97d04db5af504f9eb695bfa9b47a5997
10 Nb131a12cd00a4d548f881d12a9f8886e
11 Nb59859795fad4307bc69636252272bc1
12 Nba32131d468d41bdac4889bdc9a5ed35
13 Nbb0d208a521a409cbeefad37a390afba
14 Nbb2a8db1e05b4d13ab2d9fc2f00f48e0
15 Nca04d1820f7743a9bcf426fe5bf44a3e
16 Ncf33d104a13f4071990769af01bfed61
17 Nf15dafc46d364ef08de2a2e1dd1fc208
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author Nb226dd95e88040a689f56bab86be6721
21 schema:citation sg:pub.10.1007/s00125-012-2534-0
22 sg:pub.10.1007/s00125-016-3902-y
23 sg:pub.10.1007/s00535-015-1050-7
24 sg:pub.10.1007/s11892-015-0602-9
25 sg:pub.10.1038/nature09253
26 sg:pub.10.1186/s40200-015-0147-0
27 schema:datePublished 2018-05-17
28 schema:datePublishedReg 2018-05-17
29 schema:description IntroductionHealthy eating is a critical aspect of the prevention and management of type 2 diabetes (T2DM). Disrupted eating patterns can result in poor glucose control and increase the likelihood of diabetic complications. Teneligliptin inhibits dipeptidyl peptidase-4 activity for 24 h and suppresses postprandial hyperglycemia after all three daily meals. This interim analysis of data from the large-scale post-marketing surveillance of teneligliptin (RUBY) in Japan examined eating patterns and their relationship with metabolic parameters and diabetic complications. We also examined whether eating patterns affected safety and efficacy of teneligliptin.MethodsWe analyzed baseline data from survey forms collected in RUBY between May 2013 and June 2017, including patient characteristics, metabolic parameters, and eating patterns (eating three meals per day or not; timing of evening meal) before teneligliptin treatment was initiated. Safety and efficacy of 12 months’ teneligliptin (20–40 mg/day) treatment was assessed.ResultsData from 10,532 patients were available for analysis. Most patients who did not eat three meals per day (n  =757) or who ate their evening meal after 10 PM (n  =206) were 64 years old or younger. At baseline, glycated hemoglobin (HbA1c), fasting blood glucose, triglycerides, total and low-density lipoprotein cholesterol, body mass index, alanine aminotransferase, and aspartate aminotransferase levels were higher in those patients who did not eat three meals per day (p < 0.05) or who ate their evening meal late (p < 0.05). Diabetic complications were more common in patients who did not eat three meals per day. Treatment with teneligliptin reduced HbA1c over 6 or 12 months across all eating patterns, with a low incidence of adverse drug reactions.ConclusionsEating patterns may be associated with altered metabolic parameters and diabetic complications among Japanese patients with T2DM. Teneligliptin may be well tolerated and improve hyperglycemia in patients with T2DM irrespective of eating patterns.FundingMitsubishi Tanabe Pharma Corporation and Daiichi Sankyo Co. Ltd.Trial Registration NumberJapic CTI-153047.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N7182bef5cd734881a48f4f508a3e1092
33 Nea0300266b6b409ba4208a64f3a23abc
34 sg:journal.1096634
35 schema:keywords Co. Ltd
36 Japan
37 Japanese patients
38 Japanese type 2
39 Ltd
40 MethodsWe
41 PM
42 ResultsData
43 T2DM
44 activity
45 adverse drug reactions
46 alanine aminotransferase
47 aminotransferase
48 aminotransferase levels
49 analysis
50 aspects
51 baseline
52 baseline data
53 blood glucose
54 body mass index
55 characteristics
56 cholesterol
57 complications
58 control
59 corporations
60 critical aspects
61 daily meals
62 data
63 days
64 diabetes
65 diabetic complications
66 drug reactions
67 eating
68 eating patterns
69 efficacy
70 efficacy of teneligliptin
71 evening meal
72 form
73 glucose
74 glucose control
75 hemoglobin
76 hyperglycemia
77 incidence
78 index
79 inhibits
80 interim analysis
81 interim results
82 levels
83 likelihood
84 lipoprotein cholesterol
85 low-density lipoprotein cholesterol
86 lower incidence
87 management
88 mass index
89 meal
90 metabolic parameters
91 months
92 most patients
93 parameters
94 patient characteristics
95 patients
96 patterns
97 poor glucose control
98 post-market surveillance
99 post-marketing surveillance
100 postprandial hyperglycemia
101 prevention
102 reaction
103 relationship
104 results
105 ruby
106 safety
107 surveillance
108 survey form
109 teneligliptin
110 teneligliptin treatment
111 treatment
112 triglycerides
113 type 2
114 type 2 diabetes
115 years
116 schema:name Relationship of Eating Patterns and Metabolic Parameters, and Teneligliptin Treatment: Interim Results from Post-marketing Surveillance in Japanese Type 2 Diabetes Patients
117 schema:pagination 817-831
118 schema:productId N192080a8b46143ea8aaf7f840dcb6ec6
119 N5e1470af8eea4cc8acebf66cd9f25a9d
120 Nf22b53ea707940d2adf1191832b80e83
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104044083
122 https://doi.org/10.1007/s12325-018-0704-2
123 schema:sdDatePublished 2022-09-02T16:01
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher N42c51e3f0e0a4b05a5ab77ff1f85eb5d
126 schema:url https://doi.org/10.1007/s12325-018-0704-2
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N192080a8b46143ea8aaf7f840dcb6ec6 schema:name dimensions_id
131 schema:value pub.1104044083
132 rdf:type schema:PropertyValue
133 N20cf6bb9cbd940038b6afa7503d08115 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Glycated Hemoglobin A
135 rdf:type schema:DefinedTerm
136 N2451be44a3b7403aa8a138fa179c7031 rdf:first sg:person.014325424431.13
137 rdf:rest N34ede804431e49e89642cd761aee9aa4
138 N29393e959de54a6e878cfbeef6eea518 rdf:first sg:person.01335361505.82
139 rdf:rest Nc7adc8c80b7a4a118fa48fb5c7482fda
140 N34ede804431e49e89642cd761aee9aa4 rdf:first sg:person.013420536353.65
141 rdf:rest rdf:nil
142 N42c51e3f0e0a4b05a5ab77ff1f85eb5d schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N4d9a3e239d5e4a4ca985ed8ebbd64164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Pyrazoles
146 rdf:type schema:DefinedTerm
147 N5e1470af8eea4cc8acebf66cd9f25a9d schema:name pubmed_id
148 schema:value 29777520
149 rdf:type schema:PropertyValue
150 N64c617fb601745e4bd083be2adeaa77f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N6a34a97ede5a4288801bba2d83f013bd rdf:first sg:person.013440705734.23
154 rdf:rest N29393e959de54a6e878cfbeef6eea518
155 N6db8b47c3eb941daa94660b2a44fa684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Middle Aged
157 rdf:type schema:DefinedTerm
158 N7182bef5cd734881a48f4f508a3e1092 schema:issueNumber 6
159 rdf:type schema:PublicationIssue
160 N77a5f1de5f1448c6b4732c3210243ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Aged
162 rdf:type schema:DefinedTerm
163 N82e79f1a1a2b4d448bec06d31d8e1142 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Diet, Healthy
165 rdf:type schema:DefinedTerm
166 N8e9aaf7a02bd4802bf2e7e9dffc5d6dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Combined Modality Therapy
168 rdf:type schema:DefinedTerm
169 N94c4f1b8c958442aa30557c7b14a3e03 rdf:first sg:person.01342044323.24
170 rdf:rest N6a34a97ede5a4288801bba2d83f013bd
171 N979e40d0996140ac81dbb1dc7d3093c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Blood Glucose
173 rdf:type schema:DefinedTerm
174 N97d04db5af504f9eb695bfa9b47a5997 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Dipeptidyl-Peptidase IV Inhibitors
176 rdf:type schema:DefinedTerm
177 Nb131a12cd00a4d548f881d12a9f8886e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Japan
179 rdf:type schema:DefinedTerm
180 Nb226dd95e88040a689f56bab86be6721 rdf:first sg:person.01353472360.41
181 rdf:rest N94c4f1b8c958442aa30557c7b14a3e03
182 Nb59859795fad4307bc69636252272bc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Hyperglycemia
184 rdf:type schema:DefinedTerm
185 Nba32131d468d41bdac4889bdc9a5ed35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Thiazolidines
187 rdf:type schema:DefinedTerm
188 Nbb0d208a521a409cbeefad37a390afba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Hypoglycemia
190 rdf:type schema:DefinedTerm
191 Nbb2a8db1e05b4d13ab2d9fc2f00f48e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Hypoglycemic Agents
193 rdf:type schema:DefinedTerm
194 Nc7adc8c80b7a4a118fa48fb5c7482fda rdf:first sg:person.016326663135.44
195 rdf:rest N2451be44a3b7403aa8a138fa179c7031
196 Nca04d1820f7743a9bcf426fe5bf44a3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Male
198 rdf:type schema:DefinedTerm
199 Ncf33d104a13f4071990769af01bfed61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Humans
201 rdf:type schema:DefinedTerm
202 Nea0300266b6b409ba4208a64f3a23abc schema:volumeNumber 35
203 rdf:type schema:PublicationVolume
204 Nf15dafc46d364ef08de2a2e1dd1fc208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Diabetes Mellitus, Type 2
206 rdf:type schema:DefinedTerm
207 Nf22b53ea707940d2adf1191832b80e83 schema:name doi
208 schema:value 10.1007/s12325-018-0704-2
209 rdf:type schema:PropertyValue
210 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
211 schema:name Medical and Health Sciences
212 rdf:type schema:DefinedTerm
213 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
214 schema:name Clinical Sciences
215 rdf:type schema:DefinedTerm
216 sg:journal.1096634 schema:issn 0741-238X
217 1865-8652
218 schema:name Advances in Therapy
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.01335361505.82 schema:affiliation grid-institutes:grid.418306.8
222 schema:familyName Sasaki
223 schema:givenName Kazuyo
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335361505.82
225 rdf:type schema:Person
226 sg:person.01342044323.24 schema:affiliation grid-institutes:None
227 schema:familyName Haneda
228 schema:givenName Masakazu
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342044323.24
230 rdf:type schema:Person
231 sg:person.013420536353.65 schema:affiliation grid-institutes:grid.418306.8
232 schema:familyName Ueno
233 schema:givenName Makoto
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420536353.65
235 rdf:type schema:Person
236 sg:person.013440705734.23 schema:affiliation grid-institutes:grid.261356.5
237 schema:familyName Ito
238 schema:givenName Hiroshi
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440705734.23
240 rdf:type schema:Person
241 sg:person.01353472360.41 schema:affiliation grid-institutes:grid.26999.3d
242 schema:familyName Kadowaki
243 schema:givenName Takashi
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41
245 rdf:type schema:Person
246 sg:person.014325424431.13 schema:affiliation grid-institutes:grid.418306.8
247 schema:familyName Matsukawa
248 schema:givenName Miyuki
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325424431.13
250 rdf:type schema:Person
251 sg:person.016326663135.44 schema:affiliation grid-institutes:grid.418306.8
252 schema:familyName Hiraide
253 schema:givenName Sonoe
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326663135.44
255 rdf:type schema:Person
256 sg:pub.10.1007/s00125-012-2534-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048718893
257 https://doi.org/10.1007/s00125-012-2534-0
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s00125-016-3902-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028353778
260 https://doi.org/10.1007/s00125-016-3902-y
261 rdf:type schema:CreativeWork
262 sg:pub.10.1007/s00535-015-1050-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032449418
263 https://doi.org/10.1007/s00535-015-1050-7
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s11892-015-0602-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026921846
266 https://doi.org/10.1007/s11892-015-0602-9
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/nature09253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011274307
269 https://doi.org/10.1038/nature09253
270 rdf:type schema:CreativeWork
271 sg:pub.10.1186/s40200-015-0147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019800554
272 https://doi.org/10.1186/s40200-015-0147-0
273 rdf:type schema:CreativeWork
274 grid-institutes:None schema:alternateName Medical Corporation Kyousoukai, Osaka, Japan
275 schema:name Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
276 Medical Corporation Kyousoukai, Osaka, Japan
277 rdf:type schema:Organization
278 grid-institutes:grid.261356.5 schema:alternateName Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
279 schema:name Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
280 rdf:type schema:Organization
281 grid-institutes:grid.26999.3d schema:alternateName Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
282 schema:name Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
283 rdf:type schema:Organization
284 grid-institutes:grid.418306.8 schema:alternateName Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
285 schema:name Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...