Neural Evidence of the Cerebellum as a State Predictor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-09

AUTHORS

Hirokazu Tanaka, Takahiro Ishikawa, Shinji Kakei

ABSTRACT

We here provide neural evidence that the cerebellar circuit can predict future inputs from present outputs, a hallmark of an internal forward model. Recent computational studies hypothesize that the cerebellum performs state prediction known as a forward model. To test the forward-model hypothesis, we analyzed activities of 94 mossy fibers (inputs to the cerebellar cortex), 83 Purkinje cells (output from the cerebellar cortex to dentate nucleus), and 73 dentate nucleus cells (cerebellar output) in the cerebro-cerebellum, all recorded from a monkey performing step-tracking movements of the right wrist. We found that the firing rates of one population could be reconstructed as a weighted linear sum of those of preceding populations. We then went on to investigate if the current outputs of the cerebellum (dentate cells) could predict the future inputs of the cerebellum (mossy fibers). The firing rates of mossy fibers at time t + t1 could be well reconstructed from as a weighted sum of firing rates of dentate cells at time t, thereby proving that the dentate activities contained predictive information about the future inputs. The average goodness-of-fit (R2) decreased moderately from 0.89 to 0.86 when t1 was increased from 20 to 100 ms, hence indicating that the prediction is able to compensate the latency of sensory feedback. The linear equations derived from the firing rates resembled those of a predictor known as Kalman filter composed of prediction and filtering steps. In summary, our analysis of cerebellar activities supports the forward-model hypothesis of the cerebellum. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12311-018-0996-4

DOI

http://dx.doi.org/10.1007/s12311-018-0996-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111313625

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30627965


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.444515.5", 
          "name": [
            "School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1211, Nomi, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Hirokazu", 
        "id": "sg:person.01231633350.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231633350.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan Institute of Medical Science", 
          "id": "https://www.grid.ac/institutes/grid.272456.0", 
          "name": [
            "Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, 156-8506, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Takahiro", 
        "id": "sg:person.01203331254.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203331254.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan Institute of Medical Science", 
          "id": "https://www.grid.ac/institutes/grid.272456.0", 
          "name": [
            "Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, 156-8506, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kakei", 
        "givenName": "Shinji", 
        "id": "sg:person.01337412335.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337412335.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/brain/119.4.1183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005107049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00817.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005518443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(71)90051-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006189062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00530.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008501382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(98)01221-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009930182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(82)90380-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009992651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(82)90380-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009992651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-63356-9.00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011683567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00021.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011744817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915611", 
          "https://doi.org/10.1038/nrn1953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915611", 
          "https://doi.org/10.1038/nrn1953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00247349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013425553", 
          "https://doi.org/10.1007/bf00247349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00247349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013425553", 
          "https://doi.org/10.1007/bf00247349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12311-010-0243-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013745286", 
          "https://doi.org/10.1007/s12311-010-0243-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014921863", 
          "https://doi.org/10.1038/nrn2756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014921863", 
          "https://doi.org/10.1038/nrn2756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00075.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016757551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823118", 
          "https://doi.org/10.1038/nn.3650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2006.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018570610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020281284", 
          "https://doi.org/10.1007/bf00336192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020525354", 
          "https://doi.org/10.1038/nature15693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1969.sp008820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023887875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00557.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025492153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.10509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025901702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neures.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025990133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2011.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027161271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027924816", 
          "https://doi.org/10.1038/nn726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027924816", 
          "https://doi.org/10.1038/nn726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(03)42013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029610967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12311-013-0543-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029932513", 
          "https://doi.org/10.1007/s12311-013-0543-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog1603_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030311031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog1603_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030311031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2008.04.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033944546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(96)00035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034787335", 
          "https://doi.org/10.1038/srep40613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1982.sp014103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0108774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039742825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1323-07.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041079238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-0102(86)90013-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042879613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-0102(86)90013-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042879613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00206.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044031358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365050a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046088789", 
          "https://doi.org/10.1038/365050a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-0102(03)00031-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046179987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-0102(03)00031-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046179987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046515857", 
          "https://doi.org/10.1038/nn1783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046515857", 
          "https://doi.org/10.1038/nn1783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00266.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047113570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049470952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/40.4.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4547-13.2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051865667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2622-06.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053743498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2396096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062535503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5436.2136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1999.82.5.2108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074549948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1992.67.3.547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077026349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.09-06-02080.1989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079277239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1968.31.1.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080718829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1980.43.4.1090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081949256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1978.41.3.764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083276391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1998.79.6.3272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083280501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.26179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00312-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091033671", 
          "https://doi.org/10.1038/s41467-017-00312-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-neuro-080317-061948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105496631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-neuro-080317-061948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105496631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-neuro-080317-061948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105496631"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-09", 
    "datePublishedReg": "2019-01-09", 
    "description": "We here provide neural evidence that the cerebellar circuit can predict future inputs from present outputs, a hallmark of an internal forward model. Recent computational studies hypothesize that the cerebellum performs state prediction known as a forward model. To test the forward-model hypothesis, we analyzed activities of 94 mossy fibers (inputs to the cerebellar cortex), 83 Purkinje cells (output from the cerebellar cortex to dentate nucleus), and 73 dentate nucleus cells (cerebellar output) in the cerebro-cerebellum, all recorded from a monkey performing step-tracking movements of the right wrist. We found that the firing rates of one population could be reconstructed as a weighted linear sum of those of preceding populations. We then went on to investigate if the current outputs of the cerebellum (dentate cells) could predict the future inputs of the cerebellum (mossy fibers). The firing rates of mossy fibers at time t\u2009+\u2009t1 could be well reconstructed from as a weighted sum of firing rates of dentate cells at time t, thereby proving that the dentate activities contained predictive information about the future inputs. The average goodness-of-fit (R2) decreased moderately from 0.89 to 0.86 when t1 was increased from 20 to 100\u00a0ms, hence indicating that the prediction is able to compensate the latency of sensory feedback. The linear equations derived from the firing rates resembled those of a predictor known as Kalman filter composed of prediction and filtering steps. In summary, our analysis of cerebellar activities supports the forward-model hypothesis of the cerebellum.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12311-018-0996-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5924892", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6124033", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5826759", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6132844", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5876233", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5818629", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6095327", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028483", 
        "issn": [
          "1473-4222", 
          "1473-4230"
        ], 
        "name": "The Cerebellum", 
        "type": "Periodical"
      }
    ], 
    "name": "Neural Evidence of the Cerebellum as a State Predictor", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5a847a34a3c13c878cee22e808167927c8c6909e1ab5a933aea1619e520866c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30627965"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101089443"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12311-018-0996-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111313625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12311-018-0996-4", 
      "https://app.dimensions.ai/details/publication/pub.1111313625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6316_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12311-018-0996-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12311-018-0996-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12311-018-0996-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12311-018-0996-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12311-018-0996-4'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      82 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12311-018-0996-4 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N7480ac7db6254a64836f44f70a53b413
4 schema:citation sg:pub.10.1007/bf00247349
5 sg:pub.10.1007/bf00336192
6 sg:pub.10.1007/s12311-010-0243-0
7 sg:pub.10.1007/s12311-013-0543-2
8 sg:pub.10.1038/365050a0
9 sg:pub.10.1038/nature15693
10 sg:pub.10.1038/nn.3650
11 sg:pub.10.1038/nn1783
12 sg:pub.10.1038/nn726
13 sg:pub.10.1038/nrn1953
14 sg:pub.10.1038/nrn2756
15 sg:pub.10.1038/s41467-017-00312-1
16 sg:pub.10.1038/srep40613
17 https://doi.org/10.1016/0025-5564(71)90051-4
18 https://doi.org/10.1016/0168-0102(86)90013-1
19 https://doi.org/10.1016/0304-3940(82)90380-9
20 https://doi.org/10.1016/b978-0-444-63356-9.00007-8
21 https://doi.org/10.1016/j.conb.2006.08.016
22 https://doi.org/10.1016/j.conb.2011.05.025
23 https://doi.org/10.1016/j.cub.2008.04.071
24 https://doi.org/10.1016/j.neures.2015.12.003
25 https://doi.org/10.1016/j.neuron.2016.01.008
26 https://doi.org/10.1016/s0079-6123(03)42013-x
27 https://doi.org/10.1016/s0168-0102(03)00031-2
28 https://doi.org/10.1016/s0893-6080(96)00035-4
29 https://doi.org/10.1016/s1364-6613(98)01221-2
30 https://doi.org/10.1093/brain/119.4.1183
31 https://doi.org/10.1093/brain/40.4.461
32 https://doi.org/10.1113/jphysiol.1969.sp008820
33 https://doi.org/10.1113/jphysiol.1982.sp014103
34 https://doi.org/10.1126/science.2396096
35 https://doi.org/10.1126/science.285.5436.2136
36 https://doi.org/10.1146/annurev-neuro-080317-061948
37 https://doi.org/10.1152/jn.00021.2003
38 https://doi.org/10.1152/jn.00075.2009
39 https://doi.org/10.1152/jn.00206.2006
40 https://doi.org/10.1152/jn.00266.2007
41 https://doi.org/10.1152/jn.00530.2015
42 https://doi.org/10.1152/jn.00557.2003
43 https://doi.org/10.1152/jn.00817.2002
44 https://doi.org/10.1152/jn.1968.31.1.14
45 https://doi.org/10.1152/jn.1978.41.3.764
46 https://doi.org/10.1152/jn.1980.43.4.1090
47 https://doi.org/10.1152/jn.1992.67.3.547
48 https://doi.org/10.1152/jn.1998.79.6.3272
49 https://doi.org/10.1152/jn.1999.82.5.2108
50 https://doi.org/10.1207/s15516709cog1603_1
51 https://doi.org/10.1371/journal.pbio.0050316
52 https://doi.org/10.1371/journal.pone.0082239
53 https://doi.org/10.1371/journal.pone.0108774
54 https://doi.org/10.1523/jneurosci.09-06-02080.1989
55 https://doi.org/10.1523/jneurosci.1323-07.2007
56 https://doi.org/10.1523/jneurosci.2622-06.2006
57 https://doi.org/10.1523/jneurosci.4547-13.2014
58 https://doi.org/10.7554/elife.10509
59 https://doi.org/10.7554/elife.26179
60 schema:datePublished 2019-01-09
61 schema:datePublishedReg 2019-01-09
62 schema:description We here provide neural evidence that the cerebellar circuit can predict future inputs from present outputs, a hallmark of an internal forward model. Recent computational studies hypothesize that the cerebellum performs state prediction known as a forward model. To test the forward-model hypothesis, we analyzed activities of 94 mossy fibers (inputs to the cerebellar cortex), 83 Purkinje cells (output from the cerebellar cortex to dentate nucleus), and 73 dentate nucleus cells (cerebellar output) in the cerebro-cerebellum, all recorded from a monkey performing step-tracking movements of the right wrist. We found that the firing rates of one population could be reconstructed as a weighted linear sum of those of preceding populations. We then went on to investigate if the current outputs of the cerebellum (dentate cells) could predict the future inputs of the cerebellum (mossy fibers). The firing rates of mossy fibers at time t + t<sub>1</sub> could be well reconstructed from as a weighted sum of firing rates of dentate cells at time t, thereby proving that the dentate activities contained predictive information about the future inputs. The average goodness-of-fit (R<sup>2</sup>) decreased moderately from 0.89 to 0.86 when t<sub>1</sub> was increased from 20 to 100 ms, hence indicating that the prediction is able to compensate the latency of sensory feedback. The linear equations derived from the firing rates resembled those of a predictor known as Kalman filter composed of prediction and filtering steps. In summary, our analysis of cerebellar activities supports the forward-model hypothesis of the cerebellum.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf sg:journal.1028483
67 schema:name Neural Evidence of the Cerebellum as a State Predictor
68 schema:pagination 1-23
69 schema:productId N32b6b3f899b24276a8ed94bd77b0d27d
70 N3f682fa4ec4e4816807066256aa56d63
71 N51b895376dfe41cab1ac3e827091d863
72 N9ed853226fc748a1b445a74c9c50a40f
73 Nf2d26a4716ec420a88ab931a7581743d
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111313625
75 https://doi.org/10.1007/s12311-018-0996-4
76 schema:sdDatePublished 2019-04-11T08:37
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N719f5285017041a98838c0fa71fd4ed2
79 schema:url https://link.springer.com/10.1007%2Fs12311-018-0996-4
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N32b6b3f899b24276a8ed94bd77b0d27d schema:name dimensions_id
84 schema:value pub.1111313625
85 rdf:type schema:PropertyValue
86 N3f682fa4ec4e4816807066256aa56d63 schema:name readcube_id
87 schema:value e5a847a34a3c13c878cee22e808167927c8c6909e1ab5a933aea1619e520866c
88 rdf:type schema:PropertyValue
89 N51b895376dfe41cab1ac3e827091d863 schema:name pubmed_id
90 schema:value 30627965
91 rdf:type schema:PropertyValue
92 N719f5285017041a98838c0fa71fd4ed2 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N7480ac7db6254a64836f44f70a53b413 rdf:first sg:person.01231633350.52
95 rdf:rest Nd5be34a67fe446b597d94b4bc3c8db0a
96 N9ed853226fc748a1b445a74c9c50a40f schema:name nlm_unique_id
97 schema:value 101089443
98 rdf:type schema:PropertyValue
99 Nd5be34a67fe446b597d94b4bc3c8db0a rdf:first sg:person.01203331254.42
100 rdf:rest Nfe03b7d2f5ae4807acb02dced90e450e
101 Nf2d26a4716ec420a88ab931a7581743d schema:name doi
102 schema:value 10.1007/s12311-018-0996-4
103 rdf:type schema:PropertyValue
104 Nfe03b7d2f5ae4807acb02dced90e450e rdf:first sg:person.01337412335.05
105 rdf:rest rdf:nil
106 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
107 schema:name Medical and Health Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
110 schema:name Neurosciences
111 rdf:type schema:DefinedTerm
112 sg:grant.5818629 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
113 rdf:type schema:MonetaryGrant
114 sg:grant.5826759 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
115 rdf:type schema:MonetaryGrant
116 sg:grant.5876233 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
117 rdf:type schema:MonetaryGrant
118 sg:grant.5924892 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
119 rdf:type schema:MonetaryGrant
120 sg:grant.6095327 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
121 rdf:type schema:MonetaryGrant
122 sg:grant.6124033 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
123 rdf:type schema:MonetaryGrant
124 sg:grant.6132844 http://pending.schema.org/fundedItem sg:pub.10.1007/s12311-018-0996-4
125 rdf:type schema:MonetaryGrant
126 sg:journal.1028483 schema:issn 1473-4222
127 1473-4230
128 schema:name The Cerebellum
129 rdf:type schema:Periodical
130 sg:person.01203331254.42 schema:affiliation https://www.grid.ac/institutes/grid.272456.0
131 schema:familyName Ishikawa
132 schema:givenName Takahiro
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203331254.42
134 rdf:type schema:Person
135 sg:person.01231633350.52 schema:affiliation https://www.grid.ac/institutes/grid.444515.5
136 schema:familyName Tanaka
137 schema:givenName Hirokazu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231633350.52
139 rdf:type schema:Person
140 sg:person.01337412335.05 schema:affiliation https://www.grid.ac/institutes/grid.272456.0
141 schema:familyName Kakei
142 schema:givenName Shinji
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337412335.05
144 rdf:type schema:Person
145 sg:pub.10.1007/bf00247349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013425553
146 https://doi.org/10.1007/bf00247349
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf00336192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020281284
149 https://doi.org/10.1007/bf00336192
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s12311-010-0243-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013745286
152 https://doi.org/10.1007/s12311-010-0243-0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s12311-013-0543-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029932513
155 https://doi.org/10.1007/s12311-013-0543-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/365050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046088789
158 https://doi.org/10.1038/365050a0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature15693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020525354
161 https://doi.org/10.1038/nature15693
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nn.3650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823118
164 https://doi.org/10.1038/nn.3650
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nn1783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046515857
167 https://doi.org/10.1038/nn1783
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nn726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027924816
170 https://doi.org/10.1038/nn726
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrn1953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915611
173 https://doi.org/10.1038/nrn1953
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nrn2756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014921863
176 https://doi.org/10.1038/nrn2756
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/s41467-017-00312-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091033671
179 https://doi.org/10.1038/s41467-017-00312-1
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/srep40613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034787335
182 https://doi.org/10.1038/srep40613
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0025-5564(71)90051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006189062
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0168-0102(86)90013-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042879613
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0304-3940(82)90380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009992651
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/b978-0-444-63356-9.00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011683567
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.conb.2006.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018570610
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.conb.2011.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027161271
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.cub.2008.04.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033944546
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.neures.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025990133
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.neuron.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049470952
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0079-6123(03)42013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029610967
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0168-0102(03)00031-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046179987
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0893-6080(96)00035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655029
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s1364-6613(98)01221-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009930182
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/brain/119.4.1183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005107049
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/brain/40.4.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050333417
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1113/jphysiol.1969.sp008820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023887875
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1113/jphysiol.1982.sp014103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334567
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.2396096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062535503
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.285.5436.2136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566726
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1146/annurev-neuro-080317-061948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105496631
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1152/jn.00021.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011744817
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1152/jn.00075.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016757551
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1152/jn.00206.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044031358
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1152/jn.00266.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047113570
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1152/jn.00530.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501382
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1152/jn.00557.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025492153
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1152/jn.00817.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005518443
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1152/jn.1968.31.1.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080718829
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1152/jn.1978.41.3.764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083276391
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1152/jn.1980.43.4.1090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081949256
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1152/jn.1992.67.3.547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077026349
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1152/jn.1998.79.6.3272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083280501
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1152/jn.1999.82.5.2108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074549948
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1207/s15516709cog1603_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030311031
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pbio.0050316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594801
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0082239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684950
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0108774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039742825
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1523/jneurosci.09-06-02080.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079277239
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1523/jneurosci.1323-07.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041079238
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1523/jneurosci.2622-06.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053743498
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1523/jneurosci.4547-13.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051865667
265 rdf:type schema:CreativeWork
266 https://doi.org/10.7554/elife.10509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025901702
267 rdf:type schema:CreativeWork
268 https://doi.org/10.7554/elife.26179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085999120
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.272456.0 schema:alternateName Tokyo Metropolitan Institute of Medical Science
271 schema:name Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, 156-8506, Tokyo, Japan
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.444515.5 schema:alternateName Japan Advanced Institute of Science and Technology
274 schema:name School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1211, Nomi, Ishikawa, Japan
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...