Geochemical processes during hydraulic fracturing: a water-rock interaction experiment and field test study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-09

AUTHORS

Yiman Li, Tianming Huang, Zhonghe Pang, Chao Jin

ABSTRACT

Various environmental problems related to flowback fluid have recently become a concern for hydraulic fracturing during shale gas production. Detailed studies on the geochemical reactions during hydraulic fracturing are performed for the Lower Silurian Longmaxi shale formation, Fuling block, Sichuan basin, SW China, through water-rock interaction experiment conducted under reservoir conditions, and comparisons with field test data are made. Results show that the total dissolved solids (TDS) of the flowback fluid increases and Ca2+, Na+, Cl– and SO42– make dominant contributions. The increases of Na+ and Cl– are assumed to be caused by halite dissolution and mixing with in situ formation water in the marine facies reservoir. The main geochemical reactions are inferred to be pyrite oxidation and the dissolution of calcite, dolomite and plagioclase, resulting in increases of major ions in the flowback fluid. Heavy metals, including Mn, Ni, Mo and Zn, exceed the drinking water criteria of China, and the potential threat from leakage should be a concern. Besides of CH4, as the specific pollutant to groundwater system, inorganic geochemical monitoring of shallow groundwater system should track TDS, major ions of Cl–, SO42–, Na+, and Ca2+, trace elements of Li, Ni, Pb, Cu, Zn, Mn, Mo and Rb, and stable isotopes, such as 18OH2O, 2HH2O and 13CDIC. More... »

PAGES

753-763

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12303-017-0114-5

DOI

http://dx.doi.org/10.1007/s12303-017-0114-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091117056


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458476.c", 
          "name": [
            "Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yiman", 
        "id": "sg:person.010765644027.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765644027.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beituchengxi Road, 100029, Chaoyang District, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458476.c", 
          "name": [
            "Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China", 
            "Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beituchengxi Road, 100029, Chaoyang District, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Tianming", 
        "id": "sg:person.07561611600.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07561611600.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Zhonghe", 
        "id": "sg:person.012225512221.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012225512221.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Resources, Hebei University of Engineering, 056038, Handan, China", 
          "id": "http://www.grid.ac/institutes/grid.412028.d", 
          "name": [
            "College of Resources, Hebei University of Engineering, 056038, Handan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Chao", 
        "id": "sg:person.011033757227.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033757227.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-24334-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042625980", 
          "https://doi.org/10.1007/978-3-319-24334-4_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12303-015-0030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029898572", 
          "https://doi.org/10.1007/s12303-015-0030-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/477271a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033046588", 
          "https://doi.org/10.1038/477271a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-015-4092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012636470", 
          "https://doi.org/10.1007/s12665-015-4092-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/aps.2012.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004827925", 
          "https://doi.org/10.1038/aps.2012.9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-09", 
    "datePublishedReg": "2017-08-09", 
    "description": "Various environmental problems related to flowback fluid have recently become a concern for hydraulic fracturing during shale gas production. Detailed studies on the geochemical reactions during hydraulic fracturing are performed for the Lower Silurian Longmaxi shale formation, Fuling block, Sichuan basin, SW China, through water-rock interaction experiment conducted under reservoir conditions, and comparisons with field test data are made. Results show that the total dissolved solids (TDS) of the flowback fluid increases and Ca2+, Na+, Cl\u2013 and SO42\u2013 make dominant contributions. The increases of Na+ and Cl\u2013 are assumed to be caused by halite dissolution and mixing with in situ formation water in the marine facies reservoir. The main geochemical reactions are inferred to be pyrite oxidation and the dissolution of calcite, dolomite and plagioclase, resulting in increases of major ions in the flowback fluid. Heavy metals, including Mn, Ni, Mo and Zn, exceed the drinking water criteria of China, and the potential threat from leakage should be a concern. Besides of CH4, as the specific pollutant to groundwater system, inorganic geochemical monitoring of shallow groundwater system should track TDS, major ions of Cl\u2013, SO42\u2013, Na+, and Ca2+, trace elements of Li, Ni, Pb, Cu, Zn, Mn, Mo and Rb, and stable isotopes, such as 18OH2O, 2HH2O and 13CDIC.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12303-017-0114-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136627", 
        "issn": [
          "1226-4806", 
          "1598-7477"
        ], 
        "name": "Geosciences Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "water\u2013rock interaction experiments", 
      "geochemical reactions", 
      "groundwater system", 
      "major ions", 
      "flowback fluid", 
      "hydraulic fracturing", 
      "shallow groundwater system", 
      "situ formation water", 
      "dissolution of calcite", 
      "Longmaxi shale formation", 
      "drinking water criteria", 
      "shale gas production", 
      "halite dissolution", 
      "geochemical monitoring", 
      "geochemical processes", 
      "SW China", 
      "Sichuan Basin", 
      "formation water", 
      "interaction experiments", 
      "pyrite oxidation", 
      "stable isotopes", 
      "trace elements", 
      "shale formations", 
      "water criteria", 
      "reservoir conditions", 
      "fracturing", 
      "SO42", 
      "gas production", 
      "heavy metals", 
      "dissolution", 
      "specific pollutants", 
      "dominant contribution", 
      "Zn", 
      "detailed study", 
      "Mn", 
      "plagioclase", 
      "China", 
      "basin", 
      "dolomite", 
      "calcite", 
      "Cl", 
      "Ni", 
      "isotopes", 
      "environmental problems", 
      "TDS", 
      "Pb", 
      "Rb", 
      "reservoir", 
      "fluid increases", 
      "fluid", 
      "CH4", 
      "water", 
      "potential threat", 
      "Cu", 
      "Mo", 
      "pollutants", 
      "field test study", 
      "formation", 
      "block", 
      "increase", 
      "metals", 
      "test study", 
      "Li", 
      "contribution", 
      "elements", 
      "data", 
      "solids", 
      "conditions", 
      "monitoring", 
      "field test data", 
      "process", 
      "experiments", 
      "system", 
      "comparison", 
      "oxidation", 
      "study", 
      "Ca2", 
      "threat", 
      "test data", 
      "production", 
      "results", 
      "leakage", 
      "ions", 
      "concern", 
      "reaction", 
      "criteria", 
      "problem"
    ], 
    "name": "Geochemical processes during hydraulic fracturing: a water-rock interaction experiment and field test study", 
    "pagination": "753-763", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091117056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12303-017-0114-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12303-017-0114-5", 
      "https://app.dimensions.ai/details/publication/pub.1091117056"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12303-017-0114-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12303-017-0114-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12303-017-0114-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12303-017-0114-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12303-017-0114-5'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      116 URIs      103 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12303-017-0114-5 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 schema:author N7724e5cca17a458d9bc0041f3f618e3e
4 schema:citation sg:pub.10.1007/978-3-319-24334-4_6
5 sg:pub.10.1007/s12303-015-0030-5
6 sg:pub.10.1007/s12665-015-4092-5
7 sg:pub.10.1038/477271a
8 sg:pub.10.1038/aps.2012.9
9 schema:datePublished 2017-08-09
10 schema:datePublishedReg 2017-08-09
11 schema:description Various environmental problems related to flowback fluid have recently become a concern for hydraulic fracturing during shale gas production. Detailed studies on the geochemical reactions during hydraulic fracturing are performed for the Lower Silurian Longmaxi shale formation, Fuling block, Sichuan basin, SW China, through water-rock interaction experiment conducted under reservoir conditions, and comparisons with field test data are made. Results show that the total dissolved solids (TDS) of the flowback fluid increases and Ca2+, Na+, Cl– and SO42– make dominant contributions. The increases of Na+ and Cl– are assumed to be caused by halite dissolution and mixing with in situ formation water in the marine facies reservoir. The main geochemical reactions are inferred to be pyrite oxidation and the dissolution of calcite, dolomite and plagioclase, resulting in increases of major ions in the flowback fluid. Heavy metals, including Mn, Ni, Mo and Zn, exceed the drinking water criteria of China, and the potential threat from leakage should be a concern. Besides of CH4, as the specific pollutant to groundwater system, inorganic geochemical monitoring of shallow groundwater system should track TDS, major ions of Cl–, SO42–, Na+, and Ca2+, trace elements of Li, Ni, Pb, Cu, Zn, Mn, Mo and Rb, and stable isotopes, such as 18OH2O, 2HH2O and 13CDIC.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N3583d30f9a254120bd4131b1322cfe91
15 N8e636c6426ed402db5bb4c223c2eb55d
16 sg:journal.1136627
17 schema:keywords CH4
18 Ca2
19 China
20 Cl
21 Cu
22 Li
23 Longmaxi shale formation
24 Mn
25 Mo
26 Ni
27 Pb
28 Rb
29 SO42
30 SW China
31 Sichuan Basin
32 TDS
33 Zn
34 basin
35 block
36 calcite
37 comparison
38 concern
39 conditions
40 contribution
41 criteria
42 data
43 detailed study
44 dissolution
45 dissolution of calcite
46 dolomite
47 dominant contribution
48 drinking water criteria
49 elements
50 environmental problems
51 experiments
52 field test data
53 field test study
54 flowback fluid
55 fluid
56 fluid increases
57 formation
58 formation water
59 fracturing
60 gas production
61 geochemical monitoring
62 geochemical processes
63 geochemical reactions
64 groundwater system
65 halite dissolution
66 heavy metals
67 hydraulic fracturing
68 increase
69 interaction experiments
70 ions
71 isotopes
72 leakage
73 major ions
74 metals
75 monitoring
76 oxidation
77 plagioclase
78 pollutants
79 potential threat
80 problem
81 process
82 production
83 pyrite oxidation
84 reaction
85 reservoir
86 reservoir conditions
87 results
88 shale formations
89 shale gas production
90 shallow groundwater system
91 situ formation water
92 solids
93 specific pollutants
94 stable isotopes
95 study
96 system
97 test data
98 test study
99 threat
100 trace elements
101 water
102 water criteria
103 water–rock interaction experiments
104 schema:name Geochemical processes during hydraulic fracturing: a water-rock interaction experiment and field test study
105 schema:pagination 753-763
106 schema:productId N0477b96a75af43559e31807f5007d8fa
107 N19d0e89c60b349dea8c531706cca672d
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091117056
109 https://doi.org/10.1007/s12303-017-0114-5
110 schema:sdDatePublished 2022-11-24T21:02
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nd69816b4a04c4b4b921ae7ace08bcd1a
113 schema:url https://doi.org/10.1007/s12303-017-0114-5
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0477b96a75af43559e31807f5007d8fa schema:name dimensions_id
118 schema:value pub.1091117056
119 rdf:type schema:PropertyValue
120 N19d0e89c60b349dea8c531706cca672d schema:name doi
121 schema:value 10.1007/s12303-017-0114-5
122 rdf:type schema:PropertyValue
123 N219489789dff422890423e619acdad55 rdf:first sg:person.07561611600.15
124 rdf:rest N600eb0d99e054dc588a5f4e9093e1482
125 N3583d30f9a254120bd4131b1322cfe91 schema:issueNumber 5
126 rdf:type schema:PublicationIssue
127 N600eb0d99e054dc588a5f4e9093e1482 rdf:first sg:person.012225512221.39
128 rdf:rest Nc3b3d142ea4442a3af2b746219ece62b
129 N7724e5cca17a458d9bc0041f3f618e3e rdf:first sg:person.010765644027.49
130 rdf:rest N219489789dff422890423e619acdad55
131 N8e636c6426ed402db5bb4c223c2eb55d schema:volumeNumber 21
132 rdf:type schema:PublicationVolume
133 Nc3b3d142ea4442a3af2b746219ece62b rdf:first sg:person.011033757227.53
134 rdf:rest rdf:nil
135 Nd69816b4a04c4b4b921ae7ace08bcd1a schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
138 schema:name Earth Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
141 schema:name Geochemistry
142 rdf:type schema:DefinedTerm
143 sg:journal.1136627 schema:issn 1226-4806
144 1598-7477
145 schema:name Geosciences Journal
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.010765644027.49 schema:affiliation grid-institutes:grid.458476.c
149 schema:familyName Li
150 schema:givenName Yiman
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765644027.49
152 rdf:type schema:Person
153 sg:person.011033757227.53 schema:affiliation grid-institutes:grid.412028.d
154 schema:familyName Jin
155 schema:givenName Chao
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033757227.53
157 rdf:type schema:Person
158 sg:person.012225512221.39 schema:affiliation grid-institutes:grid.410726.6
159 schema:familyName Pang
160 schema:givenName Zhonghe
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012225512221.39
162 rdf:type schema:Person
163 sg:person.07561611600.15 schema:affiliation grid-institutes:grid.458476.c
164 schema:familyName Huang
165 schema:givenName Tianming
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07561611600.15
167 rdf:type schema:Person
168 sg:pub.10.1007/978-3-319-24334-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042625980
169 https://doi.org/10.1007/978-3-319-24334-4_6
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s12303-015-0030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029898572
172 https://doi.org/10.1007/s12303-015-0030-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s12665-015-4092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012636470
175 https://doi.org/10.1007/s12665-015-4092-5
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/477271a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033046588
178 https://doi.org/10.1038/477271a
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/aps.2012.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004827925
181 https://doi.org/10.1038/aps.2012.9
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 100049, Beijing, China
184 schema:name Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
185 University of Chinese Academy of Sciences, 100049, Beijing, China
186 rdf:type schema:Organization
187 grid-institutes:grid.412028.d schema:alternateName College of Resources, Hebei University of Engineering, 056038, Handan, China
188 schema:name College of Resources, Hebei University of Engineering, 056038, Handan, China
189 rdf:type schema:Organization
190 grid-institutes:grid.458476.c schema:alternateName Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
191 Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beituchengxi Road, 100029, Chaoyang District, Beijing, China
192 schema:name Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
193 Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beituchengxi Road, 100029, Chaoyang District, Beijing, China
194 University of Chinese Academy of Sciences, 100049, Beijing, China
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...