Important Sensory Properties Differentiating Premium Rice Varieties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12-04

AUTHORS

Elaine T. Champagne, Karen L. Bett-Garber, Melissa A. Fitzgerald, Casey C. Grimm, Jeanne Lea, Ken’ichi Ohtsubo, Supanee Jongdee, Lihong Xie, Priscila Zaczuk Bassinello, Adoracion Resurreccion, Rauf Ahmad, Fatemah Habibi, Russell Reinke

ABSTRACT

In rice-consuming countries, specific varieties are recognized as premium, “gold standard” varieties, while others are recognized as being superior but second best, despite being identical using the current suite of tools to evaluate quality. The objectives of this study were to determine if there are distinguishable differences in sensory properties of premium and second best varieties and whether these differences are common to premium varieties. Color, an important sensory property, was determined on the raw and cooked rice using a colorimeter. As raw rice, some of the premium varieties were whiter than their second best counterparts while others were not. However, when cooked, with two exceptions, the premium varieties were of the same or greater whiteness than their counterparts. A trained sensory panel employed descriptive sensory analysis, an objective tool, to characterize and analytically measure the flavor (aromatics, taste, mouthfeel) and texture of premium and second best varieties collected from nine rice-consuming countries. Sweet taste, popcorn aroma/flavor, and water-like metallic mouthfeel showed significant differences in intensity between the premium–second best variety pairs. Slickness, roughness, and springiness were the major traits that distinguished the texture of varieties. Quality evaluation programs do not routinely measure these texture and flavor traits, but the fact that they distinguished the varieties in most pairs indicates that their measurement should be added to the suite of grain quality tests in the development of new higher-yielding, stress-tolerant varieties. The incorporation of premium quality will ensure that quality is no impediment to widespread adoption leading to enhanced productivity and food security. More... »

PAGES

270-281

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12284-010-9057-4

DOI

http://dx.doi.org/10.1007/s12284-010-9057-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011838622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Champagne", 
        "givenName": "Elaine T.", 
        "id": "sg:person.01265505706.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265505706.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bett-Garber", 
        "givenName": "Karen L.", 
        "id": "sg:person.01342413033.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342413033.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grain Quality, Nutrition and Postharvest Center, International Rice Research Institute, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Grain Quality, Nutrition and Postharvest Center, International Rice Research Institute, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fitzgerald", 
        "givenName": "Melissa A.", 
        "id": "sg:person.0652216101.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652216101.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grimm", 
        "givenName": "Casey C.", 
        "id": "sg:person.01345624711.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345624711.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "USDA ARS Southern Regional Research Center, P.O. Box\u00a019687, 70179, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lea", 
        "givenName": "Jeanne", 
        "id": "sg:person.01231376311.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231376311.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Niigata University, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Niigata University, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohtsubo", 
        "givenName": "Ken\u2019ichi", 
        "id": "sg:person.01337767355.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337767355.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.501172.0", 
          "name": [
            "Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jongdee", 
        "givenName": "Supanee", 
        "id": "sg:person.01353146506.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353146506.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China National Rice Research Institute, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.418527.d", 
          "name": [
            "China National Rice Research Institute, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Lihong", 
        "id": "sg:person.01166575765.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166575765.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EMBRAPA Rice and Beans, Santo Antonio de Goias, Goias, Brazil", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "EMBRAPA Rice and Beans, Santo Antonio de Goias, Goias, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassinello", 
        "givenName": "Priscila Zaczuk", 
        "id": "sg:person.015415222454.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415222454.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grain Quality, Nutrition and Postharvest Center, International Rice Research Institute, Metro Manila, Philippines", 
          "id": "http://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "Grain Quality, Nutrition and Postharvest Center, International Rice Research Institute, Metro Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Resurreccion", 
        "givenName": "Adoracion", 
        "id": "sg:person.01333754676.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333754676.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agricultural Research Centre, Islamabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.419165.e", 
          "name": [
            "National Agricultural Research Centre, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmad", 
        "givenName": "Rauf", 
        "id": "sg:person.0672014506.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672014506.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice Research Institute of Iran, Rasht, Iran", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Rice Research Institute of Iran, Rasht, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Habibi", 
        "givenName": "Fatemah", 
        "id": "sg:person.016473775254.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016473775254.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Industry and Investment NSW, EH Graham Centre for Agricultural Innovation and Yanco Agricultural Institute, Yanco, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Industry and Investment NSW, EH Graham Centre for Agricultural Innovation and Yanco Agricultural Institute, Yanco, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reinke", 
        "givenName": "Russell", 
        "id": "sg:person.01044240051.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044240051.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-12-04", 
    "datePublishedReg": "2010-12-04", 
    "description": "In rice-consuming countries, specific varieties are recognized as premium, \u201cgold standard\u201d varieties, while others are recognized as being superior but second best, despite being identical using the current suite of tools to evaluate quality. The objectives of this study were to determine if there are distinguishable differences in sensory properties of premium and second best varieties and whether these differences are common to premium varieties. Color, an important sensory property, was determined on the raw and cooked rice using a colorimeter. As raw rice, some of the premium varieties were whiter than their second best counterparts while others were not. However, when cooked, with two exceptions, the premium varieties were of the same or greater whiteness than their counterparts. A trained sensory panel employed descriptive sensory analysis, an objective tool, to characterize and analytically measure the flavor (aromatics, taste, mouthfeel) and texture of premium and second best varieties collected from nine rice-consuming countries. Sweet taste, popcorn aroma/flavor, and water-like metallic mouthfeel showed significant differences in intensity between the premium\u2013second best variety pairs. Slickness, roughness, and springiness were the major traits that distinguished the texture of varieties. Quality evaluation programs do not routinely measure these texture and flavor traits, but the fact that they distinguished the varieties in most pairs indicates that their measurement should be added to the suite of grain quality tests in the development of new higher-yielding, stress-tolerant varieties. The incorporation of premium quality will ensure that quality is no impediment to widespread adoption leading to enhanced productivity and food security.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12284-010-9057-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041344", 
        "issn": [
          "1939-8425", 
          "1939-8433"
        ], 
        "name": "Rice", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "premium varieties", 
      "premium", 
      "countries", 
      "food security", 
      "specific varieties", 
      "best variety", 
      "best counterpart", 
      "stress-tolerant varieties", 
      "premium quality", 
      "impediments", 
      "widespread adoption", 
      "adoption", 
      "enhanced productivity", 
      "productivity", 
      "current suite", 
      "quality", 
      "counterparts", 
      "panel", 
      "taste", 
      "major traits", 
      "fact", 
      "most pairs", 
      "security", 
      "variety", 
      "standards", 
      "tool", 
      "objective", 
      "differences", 
      "rice", 
      "analysis", 
      "program", 
      "development", 
      "rice varieties", 
      "gold standard", 
      "study", 
      "exception", 
      "intensity", 
      "evaluation program", 
      "test", 
      "suite", 
      "distinguishable differences", 
      "raw rice", 
      "sensory panel", 
      "flavor", 
      "properties", 
      "objective tool", 
      "sweet taste", 
      "significant differences", 
      "pairs", 
      "traits", 
      "quality evaluation program", 
      "measurements", 
      "quality tests", 
      "incorporation", 
      "rice-consuming countries", 
      "sensory properties", 
      "color", 
      "important sensory properties", 
      "cooked rice", 
      "colorimeter", 
      "great whiteness", 
      "whiteness", 
      "descriptive sensory analysis", 
      "sensory analysis", 
      "texture", 
      "aroma/flavor", 
      "mouthfeel", 
      "variety pairs", 
      "springiness", 
      "flavor traits", 
      "second best varieties", 
      "second best counterparts", 
      "texture of premium", 
      "popcorn aroma/flavor", 
      "water-like metallic mouthfeel", 
      "metallic mouthfeel", 
      "premium\u2013second best variety pairs", 
      "best variety pairs", 
      "texture of varieties", 
      "grain quality tests", 
      "Important Sensory Properties Differentiating Premium Rice Varieties", 
      "Sensory Properties Differentiating Premium Rice Varieties", 
      "Properties Differentiating Premium Rice Varieties", 
      "Differentiating Premium Rice Varieties", 
      "Premium Rice Varieties"
    ], 
    "name": "Important Sensory Properties Differentiating Premium Rice Varieties", 
    "pagination": "270-281", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011838622"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12284-010-9057-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12284-010-9057-4", 
      "https://app.dimensions.ai/details/publication/pub.1011838622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_526.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12284-010-9057-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12284-010-9057-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12284-010-9057-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12284-010-9057-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12284-010-9057-4'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      111 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12284-010-9057-4 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 anzsrc-for:07
4 anzsrc-for:0703
5 schema:author Nd19c1979d0cc40158a42600540bfb762
6 schema:datePublished 2010-12-04
7 schema:datePublishedReg 2010-12-04
8 schema:description In rice-consuming countries, specific varieties are recognized as premium, “gold standard” varieties, while others are recognized as being superior but second best, despite being identical using the current suite of tools to evaluate quality. The objectives of this study were to determine if there are distinguishable differences in sensory properties of premium and second best varieties and whether these differences are common to premium varieties. Color, an important sensory property, was determined on the raw and cooked rice using a colorimeter. As raw rice, some of the premium varieties were whiter than their second best counterparts while others were not. However, when cooked, with two exceptions, the premium varieties were of the same or greater whiteness than their counterparts. A trained sensory panel employed descriptive sensory analysis, an objective tool, to characterize and analytically measure the flavor (aromatics, taste, mouthfeel) and texture of premium and second best varieties collected from nine rice-consuming countries. Sweet taste, popcorn aroma/flavor, and water-like metallic mouthfeel showed significant differences in intensity between the premium–second best variety pairs. Slickness, roughness, and springiness were the major traits that distinguished the texture of varieties. Quality evaluation programs do not routinely measure these texture and flavor traits, but the fact that they distinguished the varieties in most pairs indicates that their measurement should be added to the suite of grain quality tests in the development of new higher-yielding, stress-tolerant varieties. The incorporation of premium quality will ensure that quality is no impediment to widespread adoption leading to enhanced productivity and food security.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N052df6c5369b45e8965c88a059ea9e24
13 Nfed7a5eae94c4c5b9f4fd1b1db69ce3e
14 sg:journal.1041344
15 schema:keywords Differentiating Premium Rice Varieties
16 Important Sensory Properties Differentiating Premium Rice Varieties
17 Premium Rice Varieties
18 Properties Differentiating Premium Rice Varieties
19 Sensory Properties Differentiating Premium Rice Varieties
20 adoption
21 analysis
22 aroma/flavor
23 best counterpart
24 best variety
25 best variety pairs
26 color
27 colorimeter
28 cooked rice
29 counterparts
30 countries
31 current suite
32 descriptive sensory analysis
33 development
34 differences
35 distinguishable differences
36 enhanced productivity
37 evaluation program
38 exception
39 fact
40 flavor
41 flavor traits
42 food security
43 gold standard
44 grain quality tests
45 great whiteness
46 impediments
47 important sensory properties
48 incorporation
49 intensity
50 major traits
51 measurements
52 metallic mouthfeel
53 most pairs
54 mouthfeel
55 objective
56 objective tool
57 pairs
58 panel
59 popcorn aroma/flavor
60 premium
61 premium quality
62 premium varieties
63 premium–second best variety pairs
64 productivity
65 program
66 properties
67 quality
68 quality evaluation program
69 quality tests
70 raw rice
71 rice
72 rice varieties
73 rice-consuming countries
74 second best counterparts
75 second best varieties
76 security
77 sensory analysis
78 sensory panel
79 sensory properties
80 significant differences
81 specific varieties
82 springiness
83 standards
84 stress-tolerant varieties
85 study
86 suite
87 sweet taste
88 taste
89 test
90 texture
91 texture of premium
92 texture of varieties
93 tool
94 traits
95 variety
96 variety pairs
97 water-like metallic mouthfeel
98 whiteness
99 widespread adoption
100 schema:name Important Sensory Properties Differentiating Premium Rice Varieties
101 schema:pagination 270-281
102 schema:productId N005bdde4bbf241c19e6f7d664e682e77
103 N69490ce7949c4a388a6ce5d2453efa86
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011838622
105 https://doi.org/10.1007/s12284-010-9057-4
106 schema:sdDatePublished 2022-01-01T18:23
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N086878a47068496c897cf9908f727cad
109 schema:url https://doi.org/10.1007/s12284-010-9057-4
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N005bdde4bbf241c19e6f7d664e682e77 schema:name dimensions_id
114 schema:value pub.1011838622
115 rdf:type schema:PropertyValue
116 N052df6c5369b45e8965c88a059ea9e24 schema:issueNumber 4
117 rdf:type schema:PublicationIssue
118 N086878a47068496c897cf9908f727cad schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N0d3b55d0376c4534966155fa90ac1009 rdf:first sg:person.01342413033.39
121 rdf:rest N1b70c40de09140e1b004848cdc8ea64a
122 N1b70c40de09140e1b004848cdc8ea64a rdf:first sg:person.0652216101.78
123 rdf:rest N8e4213dea93f4d71932296a033aaca3c
124 N1d363040245946108586695f2807dd87 rdf:first sg:person.016473775254.25
125 rdf:rest Na1b44d8e2fca481c92e7e59af160540e
126 N4cc243402ee04684b165962b2fb1c037 rdf:first sg:person.01333754676.37
127 rdf:rest Nfb55cc4d729b466abd98773fbd8f501f
128 N59255b91d48f45f191cdb616d95d27c0 rdf:first sg:person.01353146506.77
129 rdf:rest N678bbac802214909b11552d37d79316a
130 N678bbac802214909b11552d37d79316a rdf:first sg:person.01166575765.14
131 rdf:rest Nf237439702fd4e4685f684e00c90aaf1
132 N69490ce7949c4a388a6ce5d2453efa86 schema:name doi
133 schema:value 10.1007/s12284-010-9057-4
134 rdf:type schema:PropertyValue
135 N8e4213dea93f4d71932296a033aaca3c rdf:first sg:person.01345624711.31
136 rdf:rest Nb0cabde2c21542a2aa5fc3d9533bd92a
137 Na1b44d8e2fca481c92e7e59af160540e rdf:first sg:person.01044240051.05
138 rdf:rest rdf:nil
139 Nb0cabde2c21542a2aa5fc3d9533bd92a rdf:first sg:person.01231376311.17
140 rdf:rest Nbf9f6956c75e4a39b309a2c0c48f6bfb
141 Nbf9f6956c75e4a39b309a2c0c48f6bfb rdf:first sg:person.01337767355.18
142 rdf:rest N59255b91d48f45f191cdb616d95d27c0
143 Nd19c1979d0cc40158a42600540bfb762 rdf:first sg:person.01265505706.77
144 rdf:rest N0d3b55d0376c4534966155fa90ac1009
145 Nf237439702fd4e4685f684e00c90aaf1 rdf:first sg:person.015415222454.50
146 rdf:rest N4cc243402ee04684b165962b2fb1c037
147 Nfb55cc4d729b466abd98773fbd8f501f rdf:first sg:person.0672014506.88
148 rdf:rest N1d363040245946108586695f2807dd87
149 Nfed7a5eae94c4c5b9f4fd1b1db69ce3e schema:volumeNumber 3
150 rdf:type schema:PublicationVolume
151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
152 schema:name Biological Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
155 schema:name Plant Biology
156 rdf:type schema:DefinedTerm
157 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
158 schema:name Agricultural and Veterinary Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
161 schema:name Crop and Pasture Production
162 rdf:type schema:DefinedTerm
163 sg:journal.1041344 schema:issn 1939-8425
164 1939-8433
165 schema:name Rice
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01044240051.05 schema:affiliation grid-institutes:None
169 schema:familyName Reinke
170 schema:givenName Russell
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044240051.05
172 rdf:type schema:Person
173 sg:person.01166575765.14 schema:affiliation grid-institutes:grid.418527.d
174 schema:familyName Xie
175 schema:givenName Lihong
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166575765.14
177 rdf:type schema:Person
178 sg:person.01231376311.17 schema:affiliation grid-institutes:None
179 schema:familyName Lea
180 schema:givenName Jeanne
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231376311.17
182 rdf:type schema:Person
183 sg:person.01265505706.77 schema:affiliation grid-institutes:None
184 schema:familyName Champagne
185 schema:givenName Elaine T.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265505706.77
187 rdf:type schema:Person
188 sg:person.01333754676.37 schema:affiliation grid-institutes:grid.419387.0
189 schema:familyName Resurreccion
190 schema:givenName Adoracion
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333754676.37
192 rdf:type schema:Person
193 sg:person.01337767355.18 schema:affiliation grid-institutes:grid.260975.f
194 schema:familyName Ohtsubo
195 schema:givenName Ken’ichi
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337767355.18
197 rdf:type schema:Person
198 sg:person.01342413033.39 schema:affiliation grid-institutes:None
199 schema:familyName Bett-Garber
200 schema:givenName Karen L.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342413033.39
202 rdf:type schema:Person
203 sg:person.01345624711.31 schema:affiliation grid-institutes:None
204 schema:familyName Grimm
205 schema:givenName Casey C.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345624711.31
207 rdf:type schema:Person
208 sg:person.01353146506.77 schema:affiliation grid-institutes:grid.501172.0
209 schema:familyName Jongdee
210 schema:givenName Supanee
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353146506.77
212 rdf:type schema:Person
213 sg:person.015415222454.50 schema:affiliation grid-institutes:None
214 schema:familyName Bassinello
215 schema:givenName Priscila Zaczuk
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415222454.50
217 rdf:type schema:Person
218 sg:person.016473775254.25 schema:affiliation grid-institutes:None
219 schema:familyName Habibi
220 schema:givenName Fatemah
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016473775254.25
222 rdf:type schema:Person
223 sg:person.0652216101.78 schema:affiliation grid-institutes:grid.419387.0
224 schema:familyName Fitzgerald
225 schema:givenName Melissa A.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652216101.78
227 rdf:type schema:Person
228 sg:person.0672014506.88 schema:affiliation grid-institutes:grid.419165.e
229 schema:familyName Ahmad
230 schema:givenName Rauf
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672014506.88
232 rdf:type schema:Person
233 grid-institutes:None schema:alternateName EMBRAPA Rice and Beans, Santo Antonio de Goias, Goias, Brazil
234 Industry and Investment NSW, EH Graham Centre for Agricultural Innovation and Yanco Agricultural Institute, Yanco, Australia
235 Rice Research Institute of Iran, Rasht, Iran
236 USDA ARS Southern Regional Research Center, P.O. Box 19687, 70179, New Orleans, LA, USA
237 schema:name EMBRAPA Rice and Beans, Santo Antonio de Goias, Goias, Brazil
238 Industry and Investment NSW, EH Graham Centre for Agricultural Innovation and Yanco Agricultural Institute, Yanco, Australia
239 Rice Research Institute of Iran, Rasht, Iran
240 USDA ARS Southern Regional Research Center, P.O. Box 19687, 70179, New Orleans, LA, USA
241 rdf:type schema:Organization
242 grid-institutes:grid.260975.f schema:alternateName Niigata University, Niigata, Japan
243 schema:name Niigata University, Niigata, Japan
244 rdf:type schema:Organization
245 grid-institutes:grid.418527.d schema:alternateName China National Rice Research Institute, Hangzhou, China
246 schema:name China National Rice Research Institute, Hangzhou, China
247 rdf:type schema:Organization
248 grid-institutes:grid.419165.e schema:alternateName National Agricultural Research Centre, Islamabad, Pakistan
249 schema:name National Agricultural Research Centre, Islamabad, Pakistan
250 rdf:type schema:Organization
251 grid-institutes:grid.419387.0 schema:alternateName Grain Quality, Nutrition and Postharvest Center, International Rice Research Institute, Metro Manila, Philippines
252 schema:name Grain Quality, Nutrition and Postharvest Center, International Rice Research Institute, Metro Manila, Philippines
253 rdf:type schema:Organization
254 grid-institutes:grid.501172.0 schema:alternateName Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand
255 schema:name Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...