Microsatellite instability in Japanese female patients with triple-negative breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-01-06

AUTHORS

Kanako Kurata, Makoto Kubo, Masaya Kai, Hitomi Mori, Hitomi Kawaji, Kazuhisa Kaneshiro, Mai Yamada, Reiki Nishimura, Tomofumi Osako, Nobuyuki Arima, Masayuki Okido, Yoshinao Oda, Masafumi Nakamura

ABSTRACT

BackgroundIt is important to identify biomarkers for triple-negative breast cancers (TNBCs). Recently, pembrolizumab, an immune checkpoint inhibitor (ICI) for programmed cell death 1 (PD-1), was approved as a treatment strategy for unresectable or metastatic tumor with high-frequency microsatellite instability (MSI-H) or mismatch repair deficiency, such as malignant melanoma, non-small cell lung cancer, renal cell cancer and urothelial cancer. In addition, results from clinical trials suggested that ICI was a promising treatment for TNBCs with accumulated mutations. However, the frequency of MSI in Japanese TNBCs still remains unclear. We aimed to analyze the presence of MSI-H in TNBCs as a biomarker for ICI therapy.MethodsIn this study, we retrospectively evaluated the MSI of 228 TNBCs using an innovative method, MSI Analysis System Version 1.2 (Promega), consisting of 5 microsatellite markers: BAT-26, NR-21, BAT-25, MONO-27 and NR-24 without a normal tissue control.ResultsAmong 228 tumors, 222 (97.4%) were microsatellite stable, 4 (1.7%) low-frequency MSI and 2 (0.9%) MSI-H, respectively. Two MSI-H tumors were potentially aggressive pathologically as indicated by nuclear grade 3 and high Ki-67 (> 30%), and were classified as basal-like and non-BRCA-like, but were not consistent regarding tumor-infiltrating lymphocytes, CD8 and PD-L1 expression.ConclusionsAlthough we found that MSI-H was uncommon (0.9%) in TNBCs, potential targets for ICIs exist in TNBCs. Therefore, MSI-H breast cancer patients should be picked up using not only conventional methods but also platforms for comprehensive genomic profiling. More... »

PAGES

490-498

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12282-019-01043-5

DOI

http://dx.doi.org/10.1007/s12282-019-01043-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1123831481

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31907878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Instability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Progesterone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triple Negative Breast Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurata", 
        "givenName": "Kanako", 
        "id": "sg:person.012512352422.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512352422.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubo", 
        "givenName": "Makoto", 
        "id": "sg:person.01333511303.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333511303.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kai", 
        "givenName": "Masaya", 
        "id": "sg:person.01272322541.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272322541.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Hitomi", 
        "id": "sg:person.010432723555.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010432723555.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawaji", 
        "givenName": "Hitomi", 
        "id": "sg:person.012002302436.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012002302436.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaneshiro", 
        "givenName": "Kazuhisa", 
        "id": "sg:person.016344762635.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344762635.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Mai", 
        "id": "sg:person.015611147155.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611147155.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Reiki", 
        "id": "sg:person.013173055502.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173055502.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osako", 
        "givenName": "Tomofumi", 
        "id": "sg:person.01175256736.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175256736.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Pathology, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arima", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.016542450374.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542450374.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-ku, 810-8539, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413617.6", 
          "name": [
            "Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-ku, 810-8539, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okido", 
        "givenName": "Masayuki", 
        "id": "sg:person.0763112563.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763112563.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oda", 
        "givenName": "Yoshinao", 
        "id": "sg:person.0730707143.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730707143.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Masafumi", 
        "id": "sg:person.015151406364.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015151406364.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-019-05256-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113995874", 
          "https://doi.org/10.1007/s10549-019-05256-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085883879", 
          "https://doi.org/10.1038/ncomms15180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0296-169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028904279", 
          "https://doi.org/10.1038/nm0296-169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024942368", 
          "https://doi.org/10.1038/nature11412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40425-018-0341-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103407654", 
          "https://doi.org/10.1186/s40425-018-0341-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-016-5173-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024468668", 
          "https://doi.org/10.1245/s10434-016-5173-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010619765", 
          "https://doi.org/10.1038/nature11252"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-01-06", 
    "datePublishedReg": "2020-01-06", 
    "description": "BackgroundIt is important to identify biomarkers for triple-negative breast cancers (TNBCs). Recently, pembrolizumab, an immune checkpoint inhibitor (ICI) for programmed cell death 1 (PD-1), was approved as a treatment strategy for unresectable or metastatic tumor with high-frequency microsatellite instability (MSI-H) or mismatch repair deficiency, such as malignant melanoma, non-small cell lung cancer, renal cell cancer and urothelial cancer. In addition, results from clinical trials suggested that ICI was a promising treatment for TNBCs with accumulated mutations. However, the frequency of MSI in Japanese TNBCs still remains unclear. We aimed to analyze the presence of MSI-H in TNBCs as a biomarker for ICI therapy.MethodsIn this study, we retrospectively evaluated the MSI of 228 TNBCs using an innovative method, MSI Analysis System Version 1.2 (Promega), consisting of 5 microsatellite markers: BAT-26, NR-21, BAT-25, MONO-27 and NR-24 without a normal tissue control.ResultsAmong 228 tumors, 222 (97.4%) were microsatellite stable, 4 (1.7%) low-frequency MSI and 2 (0.9%) MSI-H, respectively. Two MSI-H tumors were potentially aggressive pathologically as indicated by nuclear grade 3 and high Ki-67 (>\u200930%), and were classified as basal-like and non-BRCA-like, but were not consistent regarding tumor-infiltrating lymphocytes, CD8 and PD-L1 expression.ConclusionsAlthough we found that MSI-H was uncommon (0.9%) in TNBCs, potential targets for ICIs exist in TNBCs. Therefore, MSI-H breast cancer patients should be picked up using not only conventional methods but also platforms for comprehensive genomic profiling.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12282-019-01043-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7535407", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7526131", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021080", 
        "issn": [
          "1340-6868", 
          "1880-4233"
        ], 
        "name": "Breast Cancer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "triple-negative breast cancer", 
      "immune checkpoint inhibitors", 
      "breast cancer", 
      "non-small cell lung cancer", 
      "microsatellite instability", 
      "nuclear grade 3", 
      "PD-L1 expression", 
      "tumor-infiltrating lymphocytes", 
      "high-frequency microsatellite instability", 
      "cell lung cancer", 
      "breast cancer patients", 
      "cell death 1", 
      "renal cell cancer", 
      "high Ki-67", 
      "comprehensive genomic profiling", 
      "presence of MSI", 
      "Japanese female patient", 
      "mismatch repair deficiency", 
      "MSI-H tumors", 
      "frequency of MSI", 
      "low-frequency MSI", 
      "normal tissue controls", 
      "ICI therapy", 
      "MONO-27", 
      "checkpoint inhibitors", 
      "death-1", 
      "cell cancer", 
      "urothelial cancer", 
      "female patients", 
      "metastatic tumors", 
      "lung cancer", 
      "cancer patients", 
      "malignant melanoma", 
      "clinical trials", 
      "treatment strategies", 
      "NR-21", 
      "grade 3", 
      "Ki-67", 
      "NR-24", 
      "promising treatment", 
      "BAT-25", 
      "BAT-26", 
      "cancer", 
      "genomic profiling", 
      "tumors", 
      "repair deficiency", 
      "tissue controls", 
      "potential target", 
      "patients", 
      "biomarkers", 
      "MSI", 
      "CD8", 
      "lymphocytes", 
      "BackgroundIt", 
      "therapy", 
      "melanoma", 
      "MethodsIn", 
      "ConclusionsAlthough", 
      "trials", 
      "treatment", 
      "inhibitors", 
      "markers", 
      "deficiency", 
      "expression", 
      "mutations", 
      "target", 
      "control", 
      "study", 
      "profiling", 
      "presence", 
      "frequency", 
      "addition", 
      "strategies", 
      "instability", 
      "method", 
      "version 1.2", 
      "microsatellite markers", 
      "results", 
      "innovative method", 
      "conventional methods"
    ], 
    "name": "Microsatellite instability in Japanese female patients with triple-negative breast cancer", 
    "pagination": "490-498", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1123831481"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12282-019-01043-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31907878"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12282-019-01043-5", 
      "https://app.dimensions.ai/details/publication/pub.1123831481"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_873.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12282-019-01043-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-01043-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-01043-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-01043-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-01043-5'


 

This table displays all metadata directly associated to this object as RDF triples.

336 TRIPLES      22 PREDICATES      130 URIs      114 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12282-019-01043-5 schema:about N04a1beb3850047c0ae966786b2e7508f
2 N0a22828275554dec9318b00b32eeb9b4
3 N0b9dfa6f886e4237ab293bba8c816a11
4 N14d91d4d268346e085f01f245d8adebb
5 N225774444b4545dfb394b71b5b7e6d36
6 N4255aed0811843d9a08a3681556ec910
7 N43327cfc936b49378d145ceb8dd12d30
8 N5540b980a2f943c8addfbcbe01b9785a
9 N5882d4f4edf14877a4e9cfc648ad30ce
10 N6473491bba4b499ea5f825f94d78f800
11 N708e8cfdc2fc45ef986b22c55526587a
12 N808f8a683ed447baadd50a84b05f94ea
13 N9ae6809b0f0047a785ee13e1f97fe26c
14 Na69fe9d32e554f14b1424f98d7af9950
15 Nda76dcda08ad4589ae24f3e97ac6e472
16 Nee3f82d3c69942fe8b2262365331ed87
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N8a4b74760afa4c85a23bc7230c268387
20 schema:citation sg:pub.10.1007/s10549-019-05256-2
21 sg:pub.10.1038/35021093
22 sg:pub.10.1038/nature11252
23 sg:pub.10.1038/nature11412
24 sg:pub.10.1038/ncomms15180
25 sg:pub.10.1038/nm0296-169
26 sg:pub.10.1186/s40425-018-0341-y
27 sg:pub.10.1245/s10434-016-5173-8
28 schema:datePublished 2020-01-06
29 schema:datePublishedReg 2020-01-06
30 schema:description BackgroundIt is important to identify biomarkers for triple-negative breast cancers (TNBCs). Recently, pembrolizumab, an immune checkpoint inhibitor (ICI) for programmed cell death 1 (PD-1), was approved as a treatment strategy for unresectable or metastatic tumor with high-frequency microsatellite instability (MSI-H) or mismatch repair deficiency, such as malignant melanoma, non-small cell lung cancer, renal cell cancer and urothelial cancer. In addition, results from clinical trials suggested that ICI was a promising treatment for TNBCs with accumulated mutations. However, the frequency of MSI in Japanese TNBCs still remains unclear. We aimed to analyze the presence of MSI-H in TNBCs as a biomarker for ICI therapy.MethodsIn this study, we retrospectively evaluated the MSI of 228 TNBCs using an innovative method, MSI Analysis System Version 1.2 (Promega), consisting of 5 microsatellite markers: BAT-26, NR-21, BAT-25, MONO-27 and NR-24 without a normal tissue control.ResultsAmong 228 tumors, 222 (97.4%) were microsatellite stable, 4 (1.7%) low-frequency MSI and 2 (0.9%) MSI-H, respectively. Two MSI-H tumors were potentially aggressive pathologically as indicated by nuclear grade 3 and high Ki-67 (> 30%), and were classified as basal-like and non-BRCA-like, but were not consistent regarding tumor-infiltrating lymphocytes, CD8 and PD-L1 expression.ConclusionsAlthough we found that MSI-H was uncommon (0.9%) in TNBCs, potential targets for ICIs exist in TNBCs. Therefore, MSI-H breast cancer patients should be picked up using not only conventional methods but also platforms for comprehensive genomic profiling.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N3631ca840c3449e4b190503dfbe4cd15
35 N5161e1f5866443a890af583540520fa5
36 sg:journal.1021080
37 schema:keywords BAT-25
38 BAT-26
39 BackgroundIt
40 CD8
41 ConclusionsAlthough
42 ICI therapy
43 Japanese female patient
44 Ki-67
45 MONO-27
46 MSI
47 MSI-H tumors
48 MethodsIn
49 NR-21
50 NR-24
51 PD-L1 expression
52 addition
53 biomarkers
54 breast cancer
55 breast cancer patients
56 cancer
57 cancer patients
58 cell cancer
59 cell death 1
60 cell lung cancer
61 checkpoint inhibitors
62 clinical trials
63 comprehensive genomic profiling
64 control
65 conventional methods
66 death-1
67 deficiency
68 expression
69 female patients
70 frequency
71 frequency of MSI
72 genomic profiling
73 grade 3
74 high Ki-67
75 high-frequency microsatellite instability
76 immune checkpoint inhibitors
77 inhibitors
78 innovative method
79 instability
80 low-frequency MSI
81 lung cancer
82 lymphocytes
83 malignant melanoma
84 markers
85 melanoma
86 metastatic tumors
87 method
88 microsatellite instability
89 microsatellite markers
90 mismatch repair deficiency
91 mutations
92 non-small cell lung cancer
93 normal tissue controls
94 nuclear grade 3
95 patients
96 potential target
97 presence
98 presence of MSI
99 profiling
100 promising treatment
101 renal cell cancer
102 repair deficiency
103 results
104 strategies
105 study
106 target
107 therapy
108 tissue controls
109 treatment
110 treatment strategies
111 trials
112 triple-negative breast cancer
113 tumor-infiltrating lymphocytes
114 tumors
115 urothelial cancer
116 version 1.2
117 schema:name Microsatellite instability in Japanese female patients with triple-negative breast cancer
118 schema:pagination 490-498
119 schema:productId N0b67f585bbea4c429f31af3ae3a2e379
120 N7d14a9d0199f43fd9d367904a81c52d6
121 Nd9dbc2800b3f41b3b8da78a8c76145f7
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123831481
123 https://doi.org/10.1007/s12282-019-01043-5
124 schema:sdDatePublished 2022-06-01T22:23
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N7627c6bbdaa94213b0da8095a9906ca3
127 schema:url https://doi.org/10.1007/s12282-019-01043-5
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N04a1beb3850047c0ae966786b2e7508f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Follow-Up Studies
133 rdf:type schema:DefinedTerm
134 N0a22828275554dec9318b00b32eeb9b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Receptors, Estrogen
136 rdf:type schema:DefinedTerm
137 N0b67f585bbea4c429f31af3ae3a2e379 schema:name dimensions_id
138 schema:value pub.1123831481
139 rdf:type schema:PropertyValue
140 N0b9dfa6f886e4237ab293bba8c816a11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Receptor, ErbB-2
142 rdf:type schema:DefinedTerm
143 N14d91d4d268346e085f01f245d8adebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Aged, 80 and over
145 rdf:type schema:DefinedTerm
146 N225774444b4545dfb394b71b5b7e6d36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Prognosis
148 rdf:type schema:DefinedTerm
149 N2d870ce9e07d4831acbf5430ee002b07 rdf:first sg:person.016344762635.07
150 rdf:rest Nfa0df9a241174ee28b090bdaa7b7c350
151 N32b7ce1a0c7d49bb879df881137745f1 rdf:first sg:person.0730707143.99
152 rdf:rest N91f081f6723c4175bba078018e9e44c9
153 N3631ca840c3449e4b190503dfbe4cd15 schema:volumeNumber 27
154 rdf:type schema:PublicationVolume
155 N4255aed0811843d9a08a3681556ec910 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Female
157 rdf:type schema:DefinedTerm
158 N43327cfc936b49378d145ceb8dd12d30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Microsatellite Instability
160 rdf:type schema:DefinedTerm
161 N5161e1f5866443a890af583540520fa5 schema:issueNumber 3
162 rdf:type schema:PublicationIssue
163 N5540b980a2f943c8addfbcbe01b9785a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Survival Rate
165 rdf:type schema:DefinedTerm
166 N579219bc47cb4972848be6f11b9ee27f rdf:first sg:person.016542450374.76
167 rdf:rest Nb0e0ee546bee45bf94928f92c8b2c9e5
168 N5882d4f4edf14877a4e9cfc648ad30ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Aged
170 rdf:type schema:DefinedTerm
171 N5d2a82c618e54001a516a92d98aa77ad rdf:first sg:person.010432723555.13
172 rdf:rest N5da14a0253e243d28c0ef3e1c85a464d
173 N5da14a0253e243d28c0ef3e1c85a464d rdf:first sg:person.012002302436.02
174 rdf:rest N2d870ce9e07d4831acbf5430ee002b07
175 N6473491bba4b499ea5f825f94d78f800 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 N708e8cfdc2fc45ef986b22c55526587a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Receptors, Progesterone
180 rdf:type schema:DefinedTerm
181 N7627c6bbdaa94213b0da8095a9906ca3 schema:name Springer Nature - SN SciGraph project
182 rdf:type schema:Organization
183 N7d14a9d0199f43fd9d367904a81c52d6 schema:name doi
184 schema:value 10.1007/s12282-019-01043-5
185 rdf:type schema:PropertyValue
186 N808f8a683ed447baadd50a84b05f94ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Retrospective Studies
188 rdf:type schema:DefinedTerm
189 N8a4b74760afa4c85a23bc7230c268387 rdf:first sg:person.012512352422.70
190 rdf:rest Ne4672fee29644f689409e36c9e7dff45
191 N91f081f6723c4175bba078018e9e44c9 rdf:first sg:person.015151406364.90
192 rdf:rest rdf:nil
193 N9ae6809b0f0047a785ee13e1f97fe26c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Middle Aged
195 rdf:type schema:DefinedTerm
196 N9ef445252e1d4d899ae396abe397ead3 rdf:first sg:person.01272322541.20
197 rdf:rest N5d2a82c618e54001a516a92d98aa77ad
198 Na572ee0a794c44fb874b1ec465ee9a8b rdf:first sg:person.01175256736.52
199 rdf:rest N579219bc47cb4972848be6f11b9ee27f
200 Na69fe9d32e554f14b1424f98d7af9950 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Adult
202 rdf:type schema:DefinedTerm
203 Nb0e0ee546bee45bf94928f92c8b2c9e5 rdf:first sg:person.0763112563.95
204 rdf:rest N32b7ce1a0c7d49bb879df881137745f1
205 Nd9dbc2800b3f41b3b8da78a8c76145f7 schema:name pubmed_id
206 schema:value 31907878
207 rdf:type schema:PropertyValue
208 Nda76dcda08ad4589ae24f3e97ac6e472 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Triple Negative Breast Neoplasms
210 rdf:type schema:DefinedTerm
211 Ndbbe6b65990b4aaaa709d36ab1638263 rdf:first sg:person.013173055502.44
212 rdf:rest Na572ee0a794c44fb874b1ec465ee9a8b
213 Ne4672fee29644f689409e36c9e7dff45 rdf:first sg:person.01333511303.40
214 rdf:rest N9ef445252e1d4d899ae396abe397ead3
215 Nee3f82d3c69942fe8b2262365331ed87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Biomarkers, Tumor
217 rdf:type schema:DefinedTerm
218 Nfa0df9a241174ee28b090bdaa7b7c350 rdf:first sg:person.015611147155.03
219 rdf:rest Ndbbe6b65990b4aaaa709d36ab1638263
220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
221 schema:name Medical and Health Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
224 schema:name Oncology and Carcinogenesis
225 rdf:type schema:DefinedTerm
226 sg:grant.7526131 http://pending.schema.org/fundedItem sg:pub.10.1007/s12282-019-01043-5
227 rdf:type schema:MonetaryGrant
228 sg:grant.7535407 http://pending.schema.org/fundedItem sg:pub.10.1007/s12282-019-01043-5
229 rdf:type schema:MonetaryGrant
230 sg:journal.1021080 schema:issn 1340-6868
231 1880-4233
232 schema:name Breast Cancer
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.010432723555.13 schema:affiliation grid-institutes:grid.177174.3
236 schema:familyName Mori
237 schema:givenName Hitomi
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010432723555.13
239 rdf:type schema:Person
240 sg:person.01175256736.52 schema:affiliation grid-institutes:None
241 schema:familyName Osako
242 schema:givenName Tomofumi
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175256736.52
244 rdf:type schema:Person
245 sg:person.012002302436.02 schema:affiliation grid-institutes:grid.177174.3
246 schema:familyName Kawaji
247 schema:givenName Hitomi
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012002302436.02
249 rdf:type schema:Person
250 sg:person.012512352422.70 schema:affiliation grid-institutes:grid.177174.3
251 schema:familyName Kurata
252 schema:givenName Kanako
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512352422.70
254 rdf:type schema:Person
255 sg:person.01272322541.20 schema:affiliation grid-institutes:grid.177174.3
256 schema:familyName Kai
257 schema:givenName Masaya
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272322541.20
259 rdf:type schema:Person
260 sg:person.013173055502.44 schema:affiliation grid-institutes:None
261 schema:familyName Nishimura
262 schema:givenName Reiki
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173055502.44
264 rdf:type schema:Person
265 sg:person.01333511303.40 schema:affiliation grid-institutes:grid.177174.3
266 schema:familyName Kubo
267 schema:givenName Makoto
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333511303.40
269 rdf:type schema:Person
270 sg:person.015151406364.90 schema:affiliation grid-institutes:grid.177174.3
271 schema:familyName Nakamura
272 schema:givenName Masafumi
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015151406364.90
274 rdf:type schema:Person
275 sg:person.015611147155.03 schema:affiliation grid-institutes:grid.177174.3
276 schema:familyName Yamada
277 schema:givenName Mai
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611147155.03
279 rdf:type schema:Person
280 sg:person.016344762635.07 schema:affiliation grid-institutes:grid.177174.3
281 schema:familyName Kaneshiro
282 schema:givenName Kazuhisa
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344762635.07
284 rdf:type schema:Person
285 sg:person.016542450374.76 schema:affiliation grid-institutes:None
286 schema:familyName Arima
287 schema:givenName Nobuyuki
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542450374.76
289 rdf:type schema:Person
290 sg:person.0730707143.99 schema:affiliation grid-institutes:grid.177174.3
291 schema:familyName Oda
292 schema:givenName Yoshinao
293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730707143.99
294 rdf:type schema:Person
295 sg:person.0763112563.95 schema:affiliation grid-institutes:grid.413617.6
296 schema:familyName Okido
297 schema:givenName Masayuki
298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763112563.95
299 rdf:type schema:Person
300 sg:pub.10.1007/s10549-019-05256-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113995874
301 https://doi.org/10.1007/s10549-019-05256-2
302 rdf:type schema:CreativeWork
303 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
304 https://doi.org/10.1038/35021093
305 rdf:type schema:CreativeWork
306 sg:pub.10.1038/nature11252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010619765
307 https://doi.org/10.1038/nature11252
308 rdf:type schema:CreativeWork
309 sg:pub.10.1038/nature11412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942368
310 https://doi.org/10.1038/nature11412
311 rdf:type schema:CreativeWork
312 sg:pub.10.1038/ncomms15180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085883879
313 https://doi.org/10.1038/ncomms15180
314 rdf:type schema:CreativeWork
315 sg:pub.10.1038/nm0296-169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028904279
316 https://doi.org/10.1038/nm0296-169
317 rdf:type schema:CreativeWork
318 sg:pub.10.1186/s40425-018-0341-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103407654
319 https://doi.org/10.1186/s40425-018-0341-y
320 rdf:type schema:CreativeWork
321 sg:pub.10.1245/s10434-016-5173-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024468668
322 https://doi.org/10.1245/s10434-016-5173-8
323 rdf:type schema:CreativeWork
324 grid-institutes:None schema:alternateName Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan
325 Department of Pathology, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan
326 schema:name Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan
327 Department of Pathology, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, 862-8655, Kumamoto, Japan
328 rdf:type schema:Organization
329 grid-institutes:grid.177174.3 schema:alternateName Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
330 Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
331 schema:name Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
332 Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
333 rdf:type schema:Organization
334 grid-institutes:grid.413617.6 schema:alternateName Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-ku, 810-8539, Fukuoka, Japan
335 schema:name Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-ku, 810-8539, Fukuoka, Japan
336 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...