Novel tumor-infiltrating lymphocytes ultrasonography score based on ultrasonic tissue findings predicts tumor-infiltrating lymphocytes in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Kayo Fukui, Norio Masumoto, Noriyuki Shiroma, Akiko Kanou, Shinsuke Sasada, Akiko Emi, Takayuki Kadoya, Michiya Yokozaki, Koji Arihiro, Morihito Okada

ABSTRACT

BACKGROUND: The presence of tumor-infiltrating lymphocytes (TILs) is a prognostic factor for breast cancer. However, because of tumor tissue heterogeneity, an accurate and simple evaluation method is needed. We determined if preoperative characteristic ultrasonography (US) image findings are predictive of lymphocyte-predominant breast cancer (LPBC). METHODS: We evaluated 191 patients with invasive breast cancer treated by curative surgery between January 2014 and December 2017. Stromal lymphocytes in surgical pathological specimens were evaluated. Fifty-two patients with ≥ 50% stromal TILs were defined as having LPBC. Preoperative US images were examined for indicators of TILs. The US images with characteristic TILs were scored for prediction of LPBC. RESULTS: Shape (more lobulated), internal echo level (weaker), and posterior echoes (stronger) were predictors of LPBC and used to assign the TILs-US scores (0-7 points); the score cutoff for predicting LPBC was 4 points (sensitivity, 0.73; specificity, 0.87; accuracy, 0.83) based on the receiver operating characteristics (ROC) curves (AUC 0.88). Multivariate logistic regression analysis identified nuclear grade (NG), OR 3.4; estrogen receptor (ER), OR 5.7; human epidermal growth factor receptor type-2 (HER2), OR 4.1; and TILs-US score, OR 14.9 as LPBC predictors (all, p < 0.05). The sensitivity, specificity, and accuracy for predicting LPBC were 0.75, 0.69, and 0.71 for NG and 0.33, 0.96, and 0.79 for ER and HER2, respectively. ROC analysis showed that the diagnostic abilities of NG, ER, and HER2 were lower than that of the TILs-US score. CONCLUSIONS: LPBC showed characteristic US imaging findings. The TILs-US score was an accurate preoperative predictor of LPBC. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12282-019-00958-3

DOI

http://dx.doi.org/10.1007/s12282-019-00958-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112732077

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30868399


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Kayo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3-Kasumi, Minami-ku, 734-0037, Hiroshima, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masumoto", 
        "givenName": "Norio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiroma", 
        "givenName": "Noriyuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanou", 
        "givenName": "Akiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3-Kasumi, Minami-ku, 734-0037, Hiroshima, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasada", 
        "givenName": "Shinsuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3-Kasumi, Minami-ku, 734-0037, Hiroshima, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emi", 
        "givenName": "Akiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3-Kasumi, Minami-ku, 734-0037, Hiroshima, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadoya", 
        "givenName": "Takayuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokozaki", 
        "givenName": "Michiya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arihiro", 
        "givenName": "Koji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3-Kasumi, Minami-ku, 734-0037, Hiroshima, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Morihito", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/uog.930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004813419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-013-2451-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005876432", 
          "https://doi.org/10.1007/s10549-013-2451-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.299.18.2151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006540244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2014.58.1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006980479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008621930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12282-010-0221-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009000391", 
          "https://doi.org/10.1007/s12282-010-0221-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2013.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011923754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2251011667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013162647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdt556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015119993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.23.7370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015229938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdv239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021527237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.41.0902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021750149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2013.55.0491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023387220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-013-2687-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025952639", 
          "https://doi.org/10.1007/s10549-013-2687-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-013-2687-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025952639", 
          "https://doi.org/10.1007/s10549-013-2687-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2015.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027068009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.24.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027506839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028184592", 
          "https://doi.org/10.1186/bcr3072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.213.3.r99dc20889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035359416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039666396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcu.1870040404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041411226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041799026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3303-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043147314", 
          "https://doi.org/10.1007/s10549-015-3303-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3303-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043147314", 
          "https://doi.org/10.1007/s10549-015-3303-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(15)00774-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044271168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047743767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaoncol.2015.0830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048236045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7863/jum.2006.25.5.649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049105181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaoncol.2015.3239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050668874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052737833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-15-2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063225167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.1.1810177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/122.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077685886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(17)30904-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099620115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-018-4791-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104124706", 
          "https://doi.org/10.1007/s10549-018-4791-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-018-4791-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104124706", 
          "https://doi.org/10.1007/s10549-018-4791-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "BACKGROUND: The presence of tumor-infiltrating lymphocytes (TILs) is a prognostic factor for breast cancer. However, because of tumor tissue heterogeneity, an accurate and simple evaluation method is needed. We determined if preoperative characteristic ultrasonography (US) image findings are predictive of lymphocyte-predominant breast cancer (LPBC).\nMETHODS: We evaluated 191 patients with invasive breast cancer treated by curative surgery between January 2014 and December 2017. Stromal lymphocytes in surgical pathological specimens were evaluated. Fifty-two patients with \u2265\u200950% stromal TILs were defined as having LPBC. Preoperative US images were examined for indicators of TILs. The US images with characteristic TILs were scored for prediction of LPBC.\nRESULTS: Shape (more lobulated), internal echo level (weaker), and posterior echoes (stronger) were predictors of LPBC and used to assign the TILs-US scores (0-7 points); the score cutoff for predicting LPBC was 4 points (sensitivity, 0.73; specificity, 0.87; accuracy, 0.83) based on the receiver operating characteristics (ROC) curves (AUC 0.88). Multivariate logistic regression analysis identified nuclear grade (NG), OR 3.4; estrogen receptor (ER), OR 5.7; human epidermal growth factor receptor type-2 (HER2), OR 4.1; and TILs-US score, OR 14.9 as LPBC predictors (all, p\u2009<\u20090.05). The sensitivity, specificity, and accuracy for predicting LPBC were 0.75, 0.69, and 0.71 for NG and 0.33, 0.96, and 0.79 for ER and HER2, respectively. ROC analysis showed that the diagnostic abilities of NG, ER, and HER2 were lower than that of the TILs-US score.\nCONCLUSIONS: LPBC showed characteristic US imaging findings. The TILs-US score was an accurate preoperative predictor of LPBC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12282-019-00958-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1021080", 
        "issn": [
          "1340-6868", 
          "1880-4233"
        ], 
        "name": "Breast Cancer", 
        "type": "Periodical"
      }
    ], 
    "name": "Novel tumor-infiltrating lymphocytes ultrasonography score based on ultrasonic tissue findings predicts tumor-infiltrating lymphocytes in breast cancer", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fbf1e2d72ed0e9a8f02cf9afe84f984ea4a636358c06d3b2ec627178ed0967e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30868399"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100888201"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12282-019-00958-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112732077"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12282-019-00958-3", 
      "https://app.dimensions.ai/details/publication/pub.1112732077"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127456_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12282-019-00958-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-00958-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-00958-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-00958-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12282-019-00958-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      59 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12282-019-00958-3 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N6fd022bc76e346b28451c1b24ad4ca4c
4 schema:citation sg:pub.10.1007/s10549-013-2451-z
5 sg:pub.10.1007/s10549-013-2687-7
6 sg:pub.10.1007/s10549-015-3303-9
7 sg:pub.10.1007/s10549-018-4791-1
8 sg:pub.10.1007/s12282-010-0221-x
9 sg:pub.10.1186/bcr3072
10 https://doi.org/10.1001/jama.299.18.2151
11 https://doi.org/10.1001/jamaoncol.2015.0830
12 https://doi.org/10.1001/jamaoncol.2015.3239
13 https://doi.org/10.1002/jcu.1870040404
14 https://doi.org/10.1002/uog.930
15 https://doi.org/10.1016/j.ejrad.2013.02.007
16 https://doi.org/10.1016/j.ultrasmedbio.2015.12.023
17 https://doi.org/10.1016/s0140-6736(15)00774-6
18 https://doi.org/10.1016/s1470-2045(17)30904-x
19 https://doi.org/10.1093/annonc/mdt556
20 https://doi.org/10.1093/annonc/mdu112
21 https://doi.org/10.1093/annonc/mdu191
22 https://doi.org/10.1093/annonc/mdu450
23 https://doi.org/10.1093/annonc/mdv239
24 https://doi.org/10.1148/122.1.207
25 https://doi.org/10.1148/radiol.11110789
26 https://doi.org/10.1148/radiol.2251011667
27 https://doi.org/10.1148/radiology.213.3.r99dc20889
28 https://doi.org/10.1158/1078-0432.ccr-15-2338
29 https://doi.org/10.1200/jco.2009.23.7370
30 https://doi.org/10.1200/jco.2009.24.4277
31 https://doi.org/10.1200/jco.2011.41.0902
32 https://doi.org/10.1200/jco.2013.55.0491
33 https://doi.org/10.1200/jco.2014.58.1967
34 https://doi.org/10.1371/journal.pone.0079775
35 https://doi.org/10.2214/ajr.181.1.1810177
36 https://doi.org/10.7863/jum.2006.25.5.649
37 schema:datePublished 2019-03-13
38 schema:datePublishedReg 2019-03-13
39 schema:description BACKGROUND: The presence of tumor-infiltrating lymphocytes (TILs) is a prognostic factor for breast cancer. However, because of tumor tissue heterogeneity, an accurate and simple evaluation method is needed. We determined if preoperative characteristic ultrasonography (US) image findings are predictive of lymphocyte-predominant breast cancer (LPBC). METHODS: We evaluated 191 patients with invasive breast cancer treated by curative surgery between January 2014 and December 2017. Stromal lymphocytes in surgical pathological specimens were evaluated. Fifty-two patients with ≥ 50% stromal TILs were defined as having LPBC. Preoperative US images were examined for indicators of TILs. The US images with characteristic TILs were scored for prediction of LPBC. RESULTS: Shape (more lobulated), internal echo level (weaker), and posterior echoes (stronger) were predictors of LPBC and used to assign the TILs-US scores (0-7 points); the score cutoff for predicting LPBC was 4 points (sensitivity, 0.73; specificity, 0.87; accuracy, 0.83) based on the receiver operating characteristics (ROC) curves (AUC 0.88). Multivariate logistic regression analysis identified nuclear grade (NG), OR 3.4; estrogen receptor (ER), OR 5.7; human epidermal growth factor receptor type-2 (HER2), OR 4.1; and TILs-US score, OR 14.9 as LPBC predictors (all, p < 0.05). The sensitivity, specificity, and accuracy for predicting LPBC were 0.75, 0.69, and 0.71 for NG and 0.33, 0.96, and 0.79 for ER and HER2, respectively. ROC analysis showed that the diagnostic abilities of NG, ER, and HER2 were lower than that of the TILs-US score. CONCLUSIONS: LPBC showed characteristic US imaging findings. The TILs-US score was an accurate preoperative predictor of LPBC.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1021080
44 schema:name Novel tumor-infiltrating lymphocytes ultrasonography score based on ultrasonic tissue findings predicts tumor-infiltrating lymphocytes in breast cancer
45 schema:pagination 1-8
46 schema:productId N2515eab8777247a3b82c05d67768b62a
47 N2d00e65e3f9b476ebaa6fc2e7b423180
48 N3ef4c32d9bfa426784f747b253b71636
49 N58e5fb8b45d6403ebf910ce928251856
50 N7884bd5d594549789c0a121a56cac0e4
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112732077
52 https://doi.org/10.1007/s12282-019-00958-3
53 schema:sdDatePublished 2019-04-11T11:45
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb498afcd6d7f4741879227072d7dc0d1
56 schema:url https://link.springer.com/10.1007%2Fs12282-019-00958-3
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N09754fb439094833ae250a380a4c87af schema:affiliation https://www.grid.ac/institutes/grid.257022.0
61 schema:familyName Okada
62 schema:givenName Morihito
63 rdf:type schema:Person
64 N1010dcbb859d467490fbe43aabec1035 schema:affiliation https://www.grid.ac/institutes/grid.470097.d
65 schema:familyName Shiroma
66 schema:givenName Noriyuki
67 rdf:type schema:Person
68 N1d4a8f1835344cd5bc7d29001741ef1d rdf:first N1010dcbb859d467490fbe43aabec1035
69 rdf:rest N3c40af1ad2e4441d86db4254f1005172
70 N2515eab8777247a3b82c05d67768b62a schema:name doi
71 schema:value 10.1007/s12282-019-00958-3
72 rdf:type schema:PropertyValue
73 N2d00e65e3f9b476ebaa6fc2e7b423180 schema:name readcube_id
74 schema:value 8fbf1e2d72ed0e9a8f02cf9afe84f984ea4a636358c06d3b2ec627178ed0967e
75 rdf:type schema:PropertyValue
76 N2f4d14251ce04b1f896c5e8e59685b8f schema:affiliation https://www.grid.ac/institutes/grid.470097.d
77 schema:familyName Kanou
78 schema:givenName Akiko
79 rdf:type schema:Person
80 N31350656e1f34d6892c9a373d7e196ea rdf:first Ne3c3dc195aaf422aa8f9fda9e72d4ae9
81 rdf:rest N1d4a8f1835344cd5bc7d29001741ef1d
82 N38e3cea1ea0d4097983b05fbe464483f rdf:first N4b8fb334afe34eeeb75b1c1d4f3dd837
83 rdf:rest N75215b642b8e4874be9c7a0b7c939a12
84 N3c40af1ad2e4441d86db4254f1005172 rdf:first N2f4d14251ce04b1f896c5e8e59685b8f
85 rdf:rest N75eb5ff8df3d4a14bb8f4764393c738c
86 N3ef4c32d9bfa426784f747b253b71636 schema:name pubmed_id
87 schema:value 30868399
88 rdf:type schema:PropertyValue
89 N4b8fb334afe34eeeb75b1c1d4f3dd837 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
90 schema:familyName Kadoya
91 schema:givenName Takayuki
92 rdf:type schema:Person
93 N4f00c97fbc8c45f5aa0a50e1747f278a rdf:first N898e5f11d84d4d228933f2db2db92173
94 rdf:rest N38e3cea1ea0d4097983b05fbe464483f
95 N545eef36f6534b529df3e57bc58ff012 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
96 schema:familyName Sasada
97 schema:givenName Shinsuke
98 rdf:type schema:Person
99 N58e5fb8b45d6403ebf910ce928251856 schema:name nlm_unique_id
100 schema:value 100888201
101 rdf:type schema:PropertyValue
102 N5bbbdd07e9f64373b66c5d86cdd6a969 schema:affiliation https://www.grid.ac/institutes/grid.470097.d
103 schema:familyName Fukui
104 schema:givenName Kayo
105 rdf:type schema:Person
106 N6a735f08c705423493d3c30b96760619 schema:affiliation https://www.grid.ac/institutes/grid.470097.d
107 schema:familyName Yokozaki
108 schema:givenName Michiya
109 rdf:type schema:Person
110 N6fd022bc76e346b28451c1b24ad4ca4c rdf:first N5bbbdd07e9f64373b66c5d86cdd6a969
111 rdf:rest N31350656e1f34d6892c9a373d7e196ea
112 N75215b642b8e4874be9c7a0b7c939a12 rdf:first N6a735f08c705423493d3c30b96760619
113 rdf:rest N948e2008cefa49138520a8a9082efdf9
114 N75eb5ff8df3d4a14bb8f4764393c738c rdf:first N545eef36f6534b529df3e57bc58ff012
115 rdf:rest N4f00c97fbc8c45f5aa0a50e1747f278a
116 N7884bd5d594549789c0a121a56cac0e4 schema:name dimensions_id
117 schema:value pub.1112732077
118 rdf:type schema:PropertyValue
119 N898e5f11d84d4d228933f2db2db92173 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
120 schema:familyName Emi
121 schema:givenName Akiko
122 rdf:type schema:Person
123 N948e2008cefa49138520a8a9082efdf9 rdf:first Nc187355d308f437a981349fce899bef5
124 rdf:rest Nfd62e2a2c9a04567a1696529c5137b15
125 Nb498afcd6d7f4741879227072d7dc0d1 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nc187355d308f437a981349fce899bef5 schema:affiliation https://www.grid.ac/institutes/grid.470097.d
128 schema:familyName Arihiro
129 schema:givenName Koji
130 rdf:type schema:Person
131 Ne3c3dc195aaf422aa8f9fda9e72d4ae9 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
132 schema:familyName Masumoto
133 schema:givenName Norio
134 rdf:type schema:Person
135 Nfd62e2a2c9a04567a1696529c5137b15 rdf:first N09754fb439094833ae250a380a4c87af
136 rdf:rest rdf:nil
137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
138 schema:name Medical and Health Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
141 schema:name Oncology and Carcinogenesis
142 rdf:type schema:DefinedTerm
143 sg:journal.1021080 schema:issn 1340-6868
144 1880-4233
145 schema:name Breast Cancer
146 rdf:type schema:Periodical
147 sg:pub.10.1007/s10549-013-2451-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005876432
148 https://doi.org/10.1007/s10549-013-2451-z
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10549-013-2687-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025952639
151 https://doi.org/10.1007/s10549-013-2687-7
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10549-015-3303-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043147314
154 https://doi.org/10.1007/s10549-015-3303-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10549-018-4791-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104124706
157 https://doi.org/10.1007/s10549-018-4791-1
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s12282-010-0221-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009000391
160 https://doi.org/10.1007/s12282-010-0221-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/bcr3072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028184592
163 https://doi.org/10.1186/bcr3072
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1001/jama.299.18.2151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006540244
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1001/jamaoncol.2015.0830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048236045
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1001/jamaoncol.2015.3239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050668874
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/jcu.1870040404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041411226
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/uog.930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004813419
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ejrad.2013.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011923754
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ultrasmedbio.2015.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027068009
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0140-6736(15)00774-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044271168
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s1470-2045(17)30904-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1099620115
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/annonc/mdt556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015119993
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/annonc/mdu112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039666396
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/annonc/mdu191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041799026
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/annonc/mdu450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052737833
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/annonc/mdv239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021527237
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1148/122.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077685886
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1148/radiol.11110789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008621930
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1148/radiol.2251011667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013162647
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1148/radiology.213.3.r99dc20889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035359416
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1158/1078-0432.ccr-15-2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063225167
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1200/jco.2009.23.7370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015229938
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1200/jco.2009.24.4277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027506839
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1200/jco.2011.41.0902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021750149
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1200/jco.2013.55.0491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023387220
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1200/jco.2014.58.1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006980479
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1371/journal.pone.0079775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047743767
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2214/ajr.181.1.1810177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325544
216 rdf:type schema:CreativeWork
217 https://doi.org/10.7863/jum.2006.25.5.649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049105181
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.257022.0 schema:alternateName Hiroshima University
220 schema:name Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3-Kasumi, Minami-ku, 734-0037, Hiroshima, Hiroshima, Japan
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.470097.d schema:alternateName Hiroshima University Hospital
223 schema:name Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
224 Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...