The role of nuclear magnetic resonance in medical mycology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-09

AUTHORS

Tania C. Sorrell, Uwe Himmelreich

ABSTRACT

With the continued emergence of drug-resistant invasive mycoses, rapid fungal identification and susceptibility testing are needed. Nuclear magnetic resonance (NMR) spectroscopy generates complex data (“fingerprints”) based on chemical composition and metabolite profiles, which can be applied to suspensions of living microorganisms or mammalian cells, cell and tissue extracts, biological fluids, tissue biopsies, and noninvasive diagnosis in patients when linked to MRI. Closely related fungal species can be rapidly identified based on their NMR spectra, and antifungal drug effects can be measured as metabolic end points. The feasibility of classifying groups of microorganisms directly from biological samples has been demonstrated in animal models and human infections. Potential advantages of NMR spectroscopy in medical mycology include accurate identification, automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs. More work is needed to validate the automated approach on large data sets covering a broad spectrum of potential pathogens. More... »

PAGES

149-156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12281-008-0022-2

DOI

http://dx.doi.org/10.1007/s12281-008-0022-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051212859


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Infectious Diseases and Microbiology and Westmead Millennium Institute, University of Sydney and Department of Infectious Diseases, Westmead Hospital, Darcy Road, 2145, Westmead, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.413252.3", 
          "name": [
            "Centre for Infectious Diseases and Microbiology and Westmead Millennium Institute, University of Sydney and Department of Infectious Diseases, Westmead Hospital, Darcy Road, 2145, Westmead, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorrell", 
        "givenName": "Tania C.", 
        "id": "sg:person.01003151017.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003151017.13"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Himmelreich", 
        "givenName": "Uwe", 
        "id": "sg:person.01251262243.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251262243.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051888256", 
          "https://doi.org/10.1038/nbt823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047074286", 
          "https://doi.org/10.1038/nrd1157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/83496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011462196", 
          "https://doi.org/10.1038/83496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547329", 
          "https://doi.org/10.1038/nrmicro1177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-3910-7_114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014933043", 
          "https://doi.org/10.1007/1-4020-3910-7_114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b111688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039270408", 
          "https://doi.org/10.1007/b111688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58444-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001614423", 
          "https://doi.org/10.1007/978-3-642-58444-2_13"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "With the continued emergence of drug-resistant invasive mycoses, rapid fungal identification and susceptibility testing are needed. Nuclear magnetic resonance (NMR) spectroscopy generates complex data (\u201cfingerprints\u201d) based on chemical composition and metabolite profiles, which can be applied to suspensions of living microorganisms or mammalian cells, cell and tissue extracts, biological fluids, tissue biopsies, and noninvasive diagnosis in patients when linked to MRI. Closely related fungal species can be rapidly identified based on their NMR spectra, and antifungal drug effects can be measured as metabolic end points. The feasibility of classifying groups of microorganisms directly from biological samples has been demonstrated in animal models and human infections. Potential advantages of NMR spectroscopy in medical mycology include accurate identification, automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs. More work is needed to validate the automated approach on large data sets covering a broad spectrum of potential pathogens.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12281-008-0022-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1038667", 
        "issn": [
          "1936-3761", 
          "1936-377X"
        ], 
        "name": "Current Fungal Infection Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "related fungal species", 
      "groups of microorganisms", 
      "mammalian cells", 
      "fungal species", 
      "fungal identification", 
      "medical mycology", 
      "potential pathogens", 
      "metabolite profiles", 
      "microorganisms", 
      "nuclear magnetic resonance spectroscopy", 
      "cells", 
      "mycology", 
      "tissue extracts", 
      "broad spectrum", 
      "nuclear magnetic resonance", 
      "human infections", 
      "accurate identification", 
      "species", 
      "biological samples", 
      "magnetic resonance spectroscopy", 
      "NMR spectroscopy", 
      "identification", 
      "metabolic end points", 
      "NMR spectra", 
      "high throughput", 
      "pathogens", 
      "biological fluids", 
      "resonance spectroscopy", 
      "animal models", 
      "chemical composition", 
      "spectroscopy", 
      "sample delivery", 
      "magnetic resonance", 
      "role", 
      "large data sets", 
      "low running cost", 
      "extract", 
      "composition", 
      "spectra", 
      "data sets", 
      "more work", 
      "emergence", 
      "tissue biopsies", 
      "mycoses", 
      "profile", 
      "infection", 
      "analysis", 
      "invasive mycoses", 
      "susceptibility testing", 
      "resonance", 
      "effect", 
      "suspension", 
      "potential advantages", 
      "complex data", 
      "data", 
      "rapid turnaround time", 
      "set", 
      "drug effects", 
      "samples", 
      "group", 
      "delivery", 
      "approach", 
      "running costs", 
      "method", 
      "time", 
      "work", 
      "model", 
      "advantages", 
      "computer-based method", 
      "throughput", 
      "fluid", 
      "point", 
      "turnaround time", 
      "testing", 
      "cost", 
      "end point", 
      "feasibility", 
      "noninvasive diagnosis", 
      "biopsy", 
      "diagnosis", 
      "patients", 
      "MRI"
    ], 
    "name": "The role of nuclear magnetic resonance in medical mycology", 
    "pagination": "149-156", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051212859"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12281-008-0022-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12281-008-0022-2", 
      "https://app.dimensions.ai/details/publication/pub.1051212859"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_456.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12281-008-0022-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12281-008-0022-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12281-008-0022-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12281-008-0022-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12281-008-0022-2'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      116 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12281-008-0022-2 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:09
4 anzsrc-for:0903
5 schema:author N350ade2c844849779d13028c4be01590
6 schema:citation sg:pub.10.1007/1-4020-3910-7_114
7 sg:pub.10.1007/978-3-642-58444-2_13
8 sg:pub.10.1007/b111688
9 sg:pub.10.1038/83496
10 sg:pub.10.1038/nbt823
11 sg:pub.10.1038/nrd1157
12 sg:pub.10.1038/nrmicro1177
13 schema:datePublished 2008-09
14 schema:datePublishedReg 2008-09-01
15 schema:description With the continued emergence of drug-resistant invasive mycoses, rapid fungal identification and susceptibility testing are needed. Nuclear magnetic resonance (NMR) spectroscopy generates complex data (“fingerprints”) based on chemical composition and metabolite profiles, which can be applied to suspensions of living microorganisms or mammalian cells, cell and tissue extracts, biological fluids, tissue biopsies, and noninvasive diagnosis in patients when linked to MRI. Closely related fungal species can be rapidly identified based on their NMR spectra, and antifungal drug effects can be measured as metabolic end points. The feasibility of classifying groups of microorganisms directly from biological samples has been demonstrated in animal models and human infections. Potential advantages of NMR spectroscopy in medical mycology include accurate identification, automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs. More work is needed to validate the automated approach on large data sets covering a broad spectrum of potential pathogens.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N52aa4dfff4754185a69d73a651987549
19 Nca5d9d2fb90a4315bc42320bd8824ad8
20 sg:journal.1038667
21 schema:keywords MRI
22 NMR spectra
23 NMR spectroscopy
24 accurate identification
25 advantages
26 analysis
27 animal models
28 approach
29 biological fluids
30 biological samples
31 biopsy
32 broad spectrum
33 cells
34 chemical composition
35 complex data
36 composition
37 computer-based method
38 cost
39 data
40 data sets
41 delivery
42 diagnosis
43 drug effects
44 effect
45 emergence
46 end point
47 extract
48 feasibility
49 fluid
50 fungal identification
51 fungal species
52 group
53 groups of microorganisms
54 high throughput
55 human infections
56 identification
57 infection
58 invasive mycoses
59 large data sets
60 low running cost
61 magnetic resonance
62 magnetic resonance spectroscopy
63 mammalian cells
64 medical mycology
65 metabolic end points
66 metabolite profiles
67 method
68 microorganisms
69 model
70 more work
71 mycology
72 mycoses
73 noninvasive diagnosis
74 nuclear magnetic resonance
75 nuclear magnetic resonance spectroscopy
76 pathogens
77 patients
78 point
79 potential advantages
80 potential pathogens
81 profile
82 rapid turnaround time
83 related fungal species
84 resonance
85 resonance spectroscopy
86 role
87 running costs
88 sample delivery
89 samples
90 set
91 species
92 spectra
93 spectroscopy
94 susceptibility testing
95 suspension
96 testing
97 throughput
98 time
99 tissue biopsies
100 tissue extracts
101 turnaround time
102 work
103 schema:name The role of nuclear magnetic resonance in medical mycology
104 schema:pagination 149-156
105 schema:productId N2f6c668fe01141c3b72ff16f51aa37de
106 N36107f110637476db327e81a9f072680
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051212859
108 https://doi.org/10.1007/s12281-008-0022-2
109 schema:sdDatePublished 2022-12-01T06:26
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N5cd7870f78f14fcdb62d262d5236fc8a
112 schema:url https://doi.org/10.1007/s12281-008-0022-2
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N294dfde17757495183cce3adae90b515 rdf:first sg:person.01251262243.56
117 rdf:rest rdf:nil
118 N2f6c668fe01141c3b72ff16f51aa37de schema:name doi
119 schema:value 10.1007/s12281-008-0022-2
120 rdf:type schema:PropertyValue
121 N350ade2c844849779d13028c4be01590 rdf:first sg:person.01003151017.13
122 rdf:rest N294dfde17757495183cce3adae90b515
123 N36107f110637476db327e81a9f072680 schema:name dimensions_id
124 schema:value pub.1051212859
125 rdf:type schema:PropertyValue
126 N52aa4dfff4754185a69d73a651987549 schema:volumeNumber 2
127 rdf:type schema:PublicationVolume
128 N5cd7870f78f14fcdb62d262d5236fc8a schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nca5d9d2fb90a4315bc42320bd8824ad8 schema:issueNumber 3
131 rdf:type schema:PublicationIssue
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biochemistry and Cell Biology
137 rdf:type schema:DefinedTerm
138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
139 schema:name Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biomedical Engineering
143 rdf:type schema:DefinedTerm
144 sg:journal.1038667 schema:issn 1936-3761
145 1936-377X
146 schema:name Current Fungal Infection Reports
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.01003151017.13 schema:affiliation grid-institutes:grid.413252.3
150 schema:familyName Sorrell
151 schema:givenName Tania C.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003151017.13
153 rdf:type schema:Person
154 sg:person.01251262243.56 schema:familyName Himmelreich
155 schema:givenName Uwe
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251262243.56
157 rdf:type schema:Person
158 sg:pub.10.1007/1-4020-3910-7_114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014933043
159 https://doi.org/10.1007/1-4020-3910-7_114
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-642-58444-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001614423
162 https://doi.org/10.1007/978-3-642-58444-2_13
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/b111688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039270408
165 https://doi.org/10.1007/b111688
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/83496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462196
168 https://doi.org/10.1038/83496
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nbt823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051888256
171 https://doi.org/10.1038/nbt823
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nrd1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047074286
174 https://doi.org/10.1038/nrd1157
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nrmicro1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547329
177 https://doi.org/10.1038/nrmicro1177
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.413252.3 schema:alternateName Centre for Infectious Diseases and Microbiology and Westmead Millennium Institute, University of Sydney and Department of Infectious Diseases, Westmead Hospital, Darcy Road, 2145, Westmead, NSW, Australia
180 schema:name Centre for Infectious Diseases and Microbiology and Westmead Millennium Institute, University of Sydney and Department of Infectious Diseases, Westmead Hospital, Darcy Road, 2145, Westmead, NSW, Australia
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...