Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-31

AUTHORS

Jacob Johny, Yao Li, Marius Kamp, Oleg Prymak, Shun-Xing Liang, Tobias Krekeler, Martin Ritter, Lorenz Kienle, Christoph Rehbock, Stephan Barcikowski, Sven Reichenberger

ABSTRACT

High entropy metallic glass nanoparticles (HEMG NPs) are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure. Up until now, the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports, which limited their widespread use. Hence, more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable. We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs. An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation, which were stabilized within graphitic shells. Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy, probably due to the defect generation by atomic size mismatch. Furthermore, we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion. More... »

PAGES

4807-4819

References to SciGraph publications

  • 2016-09-28. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions in SCIENTIFIC REPORTS
  • 1982-12. The Fe−Mo (Iron−Molybdenum) system in BULLETIN OF ALLOY PHASE DIAGRAMS
  • 2014-11-02. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures in NATURE MATERIALS
  • 2016-03-04. Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy in OXIDATION OF METALS
  • 1975-11. Structure of graphite by neutron diffraction in NATURE
  • 2019-06-18. High-entropy alloys in NATURE REVIEWS MATERIALS
  • 2020-04-24. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis in NATURE COMMUNICATIONS
  • 2010-08. Atomistic free-volume zones and inelastic deformation of metallic glasses in NATURE MATERIALS
  • 2019-07-10. Publisher Correction: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis in NATURE COMMUNICATIONS
  • 2011-11-13. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles in NATURE CHEMISTRY
  • 2018-11-14. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes in NATURE
  • 2014-06-17. High-Entropy Metallic Glasses in JOM
  • 1988-04. The oxidation of Fe-19.6Cr-15.1Mn stainless steel in OXIDATION OF METALS
  • 2003-01. A first-principles thermodynamic approach to ordering in binary alloys in BULLETIN OF MATERIALS SCIENCE
  • 1986-04. The air oxidation of an austenitic Fe-Mn-Cr stainless steel for fusion-reactor applications in OXIDATION OF METALS
  • 2021-06-22. Multidimensional thermally-induced transformation of nest-structured complex Au-Fe nanoalloys towards equilibrium in NANO RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12274-021-3804-2

    DOI

    http://dx.doi.org/10.1007/s12274-021-3804-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140777059


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Johny", 
            "givenName": "Jacob", 
            "id": "sg:person.014035261555.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014035261555.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yao", 
            "id": "sg:person.016224320150.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224320150.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Materials Science, Synthesis and Real Structure, Kiel University, 24143, Kiel, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9764.c", 
              "name": [
                "Institute for Materials Science, Synthesis and Real Structure, Kiel University, 24143, Kiel, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamp", 
            "givenName": "Marius", 
            "id": "sg:person.014476366766.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476366766.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prymak", 
            "givenName": "Oleg", 
            "id": "sg:person.0725371511.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725371511.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Shun-Xing", 
            "id": "sg:person.012761542210.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761542210.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krekeler", 
            "givenName": "Tobias", 
            "id": "sg:person.01214663121.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214663121.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ritter", 
            "givenName": "Martin", 
            "id": "sg:person.01011525123.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011525123.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Materials Science, Synthesis and Real Structure, Kiel University, 24143, Kiel, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9764.c", 
              "name": [
                "Institute for Materials Science, Synthesis and Real Structure, Kiel University, 24143, Kiel, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kienle", 
            "givenName": "Lorenz", 
            "id": "sg:person.01164111241.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164111241.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rehbock", 
            "givenName": "Christoph", 
            "id": "sg:person.01075006054.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075006054.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barcikowski", 
            "givenName": "Stephan", 
            "id": "sg:person.01114456672.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114456672.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reichenberger", 
            "givenName": "Sven", 
            "id": "sg:person.014662317175.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662317175.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nchem.1195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000053003", 
              "https://doi.org/10.1038/nchem.1195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037415722", 
              "https://doi.org/10.1038/nmat4115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0685-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109895520", 
              "https://doi.org/10.1038/s41586-018-0685-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/258136a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047184162", 
              "https://doi.org/10.1038/258136a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41578-019-0121-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117325344", 
              "https://doi.org/10.1038/s41578-019-0121-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-021-3524-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139064620", 
              "https://doi.org/10.1007/s12274-021-3524-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-014-1002-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036605094", 
              "https://doi.org/10.1007/s11837-014-1002-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11085-016-9616-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030591824", 
              "https://doi.org/10.1007/s11085-016-9616-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-15934-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126911553", 
              "https://doi.org/10.1038/s41467-020-15934-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-11219-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117874726", 
              "https://doi.org/10.1038/s41467-019-11219-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034149236", 
              "https://doi.org/10.1038/nmat2802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02869315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005694807", 
              "https://doi.org/10.1007/bf02869315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00751800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014515151", 
              "https://doi.org/10.1007/bf00751800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02712791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009281124", 
              "https://doi.org/10.1007/bf02712791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00655899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036784480", 
              "https://doi.org/10.1007/bf00655899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep34213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007862758", 
              "https://doi.org/10.1038/srep34213"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-31", 
        "datePublishedReg": "2021-08-31", 
        "description": "High entropy metallic glass nanoparticles (HEMG NPs) are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure. Up until now, the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports, which limited their widespread use. Hence, more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable. We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs. An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation, which were stabilized within graphitic shells. Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy, probably due to the defect generation by atomic size mismatch. Furthermore, we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12274-021-3804-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042464", 
            "issn": [
              "1998-0124", 
              "1998-0000"
            ], 
            "name": "Nano Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "energy dispersive X-ray spectroscopy", 
          "metallic glass nanoparticles", 
          "transmission electron microscopy", 
          "X-ray diffraction", 
          "glass nanoparticles", 
          "energy conversion", 
          "X-ray photoelectron spectroscopy (XPS) methods", 
          "electrocatalytic energy conversion", 
          "tedious synthesis procedures", 
          "oxygen reduction reaction", 
          "advanced transmission electron microscopy", 
          "flexible synthetic approach", 
          "photoelectron spectroscopy methods", 
          "X-ray spectroscopy", 
          "high-entropy alloy target", 
          "bifunctional electrocatalysts", 
          "reduction reaction", 
          "synthetic approach", 
          "catalytic activity", 
          "graphitic shells", 
          "single-particle level", 
          "electrochemical potential", 
          "oxygen evolution", 
          "spectroscopy methods", 
          "synthesis procedure", 
          "nanoparticles", 
          "promising material", 
          "electron microscopy", 
          "tuning possibilities", 
          "amorphous structure", 
          "elemental distribution", 
          "surface segregation", 
          "NPs", 
          "alloy phase", 
          "laser ablation", 
          "defect generation", 
          "conversion", 
          "electrocatalysts", 
          "spectroscopy", 
          "diffraction", 
          "structure", 
          "alloy target", 
          "reaction", 
          "microscopy", 
          "size mismatch", 
          "atomic size mismatch", 
          "shell", 
          "incorporation", 
          "particles", 
          "amorphous alloys", 
          "materials", 
          "applications", 
          "Mo", 
          "generation", 
          "activity", 
          "widespread use", 
          "storage", 
          "phase", 
          "moderate amount", 
          "potential", 
          "amount", 
          "mismatch", 
          "suitability", 
          "character", 
          "method", 
          "depth analysis", 
          "alloy", 
          "ablation", 
          "segregation", 
          "superiority", 
          "possibility", 
          "approach", 
          "analysis", 
          "use", 
          "analogy", 
          "distribution", 
          "procedure", 
          "evolution", 
          "specialized support", 
          "target", 
          "study", 
          "support", 
          "elevated activity", 
          "levels"
        ], 
        "name": "Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts", 
        "pagination": "4807-4819", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140777059"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12274-021-3804-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12274-021-3804-2", 
          "https://app.dimensions.ai/details/publication/pub.1140777059"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_871.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12274-021-3804-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-021-3804-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-021-3804-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-021-3804-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-021-3804-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      21 PREDICATES      127 URIs      100 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12274-021-3804-2 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 anzsrc-for:0306
    4 anzsrc-for:09
    5 anzsrc-for:0912
    6 schema:author Nd38f64a2241e475d95ddb1325c4e4508
    7 schema:citation sg:pub.10.1007/bf00655899
    8 sg:pub.10.1007/bf00751800
    9 sg:pub.10.1007/bf02712791
    10 sg:pub.10.1007/bf02869315
    11 sg:pub.10.1007/s11085-016-9616-1
    12 sg:pub.10.1007/s11837-014-1002-3
    13 sg:pub.10.1007/s12274-021-3524-7
    14 sg:pub.10.1038/258136a0
    15 sg:pub.10.1038/nchem.1195
    16 sg:pub.10.1038/nmat2802
    17 sg:pub.10.1038/nmat4115
    18 sg:pub.10.1038/s41467-019-11219-4
    19 sg:pub.10.1038/s41467-020-15934-1
    20 sg:pub.10.1038/s41578-019-0121-4
    21 sg:pub.10.1038/s41586-018-0685-y
    22 sg:pub.10.1038/srep34213
    23 schema:datePublished 2021-08-31
    24 schema:datePublishedReg 2021-08-31
    25 schema:description High entropy metallic glass nanoparticles (HEMG NPs) are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure. Up until now, the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports, which limited their widespread use. Hence, more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable. We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs. An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation, which were stabilized within graphitic shells. Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy, probably due to the defect generation by atomic size mismatch. Furthermore, we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N2ad4b6ce1c854a0c927b8d91d5720f8b
    29 Nd9ec166f2c9041a0b28348a43dc3a361
    30 sg:journal.1042464
    31 schema:keywords Mo
    32 NPs
    33 X-ray diffraction
    34 X-ray photoelectron spectroscopy (XPS) methods
    35 X-ray spectroscopy
    36 ablation
    37 activity
    38 advanced transmission electron microscopy
    39 alloy
    40 alloy phase
    41 alloy target
    42 amorphous alloys
    43 amorphous structure
    44 amount
    45 analogy
    46 analysis
    47 applications
    48 approach
    49 atomic size mismatch
    50 bifunctional electrocatalysts
    51 catalytic activity
    52 character
    53 conversion
    54 defect generation
    55 depth analysis
    56 diffraction
    57 distribution
    58 electrocatalysts
    59 electrocatalytic energy conversion
    60 electrochemical potential
    61 electron microscopy
    62 elemental distribution
    63 elevated activity
    64 energy conversion
    65 energy dispersive X-ray spectroscopy
    66 evolution
    67 flexible synthetic approach
    68 generation
    69 glass nanoparticles
    70 graphitic shells
    71 high-entropy alloy target
    72 incorporation
    73 laser ablation
    74 levels
    75 materials
    76 metallic glass nanoparticles
    77 method
    78 microscopy
    79 mismatch
    80 moderate amount
    81 nanoparticles
    82 oxygen evolution
    83 oxygen reduction reaction
    84 particles
    85 phase
    86 photoelectron spectroscopy methods
    87 possibility
    88 potential
    89 procedure
    90 promising material
    91 reaction
    92 reduction reaction
    93 segregation
    94 shell
    95 single-particle level
    96 size mismatch
    97 specialized support
    98 spectroscopy
    99 spectroscopy methods
    100 storage
    101 structure
    102 study
    103 suitability
    104 superiority
    105 support
    106 surface segregation
    107 synthesis procedure
    108 synthetic approach
    109 target
    110 tedious synthesis procedures
    111 transmission electron microscopy
    112 tuning possibilities
    113 use
    114 widespread use
    115 schema:name Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts
    116 schema:pagination 4807-4819
    117 schema:productId N36367e7ffca44031926cc3df0ec49a17
    118 Nc5e54ada9936441fac6b3ca2c04d314c
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140777059
    120 https://doi.org/10.1007/s12274-021-3804-2
    121 schema:sdDatePublished 2022-11-24T21:06
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher Nc5311337c53c4f6cb1b580ce3b72b5af
    124 schema:url https://doi.org/10.1007/s12274-021-3804-2
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N2ad4b6ce1c854a0c927b8d91d5720f8b schema:issueNumber 6
    129 rdf:type schema:PublicationIssue
    130 N2fa57957ba614743b52108476308bbee rdf:first sg:person.01164111241.68
    131 rdf:rest Naeba24b02a384aedb5489790b2eb8e53
    132 N3480faad5414426380c427a33c3c0bd0 rdf:first sg:person.014476366766.06
    133 rdf:rest Nb6e2efd450864e6b84769efe9db36cb1
    134 N36367e7ffca44031926cc3df0ec49a17 schema:name dimensions_id
    135 schema:value pub.1140777059
    136 rdf:type schema:PropertyValue
    137 N579619f195874b0fa98f459f1a975b10 rdf:first sg:person.016224320150.48
    138 rdf:rest N3480faad5414426380c427a33c3c0bd0
    139 N872638126ff74ac4b3c915473cf8e08f rdf:first sg:person.014662317175.19
    140 rdf:rest rdf:nil
    141 Naeba24b02a384aedb5489790b2eb8e53 rdf:first sg:person.01075006054.33
    142 rdf:rest Nef146266efcd42e7a891291447b95b9e
    143 Nb6e2efd450864e6b84769efe9db36cb1 rdf:first sg:person.0725371511.49
    144 rdf:rest Nc17feeb7d3a6412aaa8f0c1267e4fbcf
    145 Nc17feeb7d3a6412aaa8f0c1267e4fbcf rdf:first sg:person.012761542210.35
    146 rdf:rest Ne504ca4afab247008596b571f0ca36ae
    147 Nc5311337c53c4f6cb1b580ce3b72b5af schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 Nc5e54ada9936441fac6b3ca2c04d314c schema:name doi
    150 schema:value 10.1007/s12274-021-3804-2
    151 rdf:type schema:PropertyValue
    152 Nd38f64a2241e475d95ddb1325c4e4508 rdf:first sg:person.014035261555.51
    153 rdf:rest N579619f195874b0fa98f459f1a975b10
    154 Nd9ec166f2c9041a0b28348a43dc3a361 schema:volumeNumber 15
    155 rdf:type schema:PublicationVolume
    156 Ne504ca4afab247008596b571f0ca36ae rdf:first sg:person.01214663121.33
    157 rdf:rest Nf14bba6ebd2f4fff8b8bdd68401e0fa3
    158 Nef146266efcd42e7a891291447b95b9e rdf:first sg:person.01114456672.20
    159 rdf:rest N872638126ff74ac4b3c915473cf8e08f
    160 Nf14bba6ebd2f4fff8b8bdd68401e0fa3 rdf:first sg:person.01011525123.69
    161 rdf:rest N2fa57957ba614743b52108476308bbee
    162 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Chemical Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Macromolecular and Materials Chemistry
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Physical Chemistry (incl. Structural)
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Engineering
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Materials Engineering
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1042464 schema:issn 1998-0000
    178 1998-0124
    179 schema:name Nano Research
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01011525123.69 schema:affiliation grid-institutes:grid.6884.2
    183 schema:familyName Ritter
    184 schema:givenName Martin
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011525123.69
    186 rdf:type schema:Person
    187 sg:person.01075006054.33 schema:affiliation grid-institutes:grid.5718.b
    188 schema:familyName Rehbock
    189 schema:givenName Christoph
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075006054.33
    191 rdf:type schema:Person
    192 sg:person.01114456672.20 schema:affiliation grid-institutes:grid.5718.b
    193 schema:familyName Barcikowski
    194 schema:givenName Stephan
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114456672.20
    196 rdf:type schema:Person
    197 sg:person.01164111241.68 schema:affiliation grid-institutes:grid.9764.c
    198 schema:familyName Kienle
    199 schema:givenName Lorenz
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164111241.68
    201 rdf:type schema:Person
    202 sg:person.01214663121.33 schema:affiliation grid-institutes:grid.6884.2
    203 schema:familyName Krekeler
    204 schema:givenName Tobias
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214663121.33
    206 rdf:type schema:Person
    207 sg:person.012761542210.35 schema:affiliation grid-institutes:grid.5718.b
    208 schema:familyName Liang
    209 schema:givenName Shun-Xing
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761542210.35
    211 rdf:type schema:Person
    212 sg:person.014035261555.51 schema:affiliation grid-institutes:grid.5718.b
    213 schema:familyName Johny
    214 schema:givenName Jacob
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014035261555.51
    216 rdf:type schema:Person
    217 sg:person.014476366766.06 schema:affiliation grid-institutes:grid.9764.c
    218 schema:familyName Kamp
    219 schema:givenName Marius
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476366766.06
    221 rdf:type schema:Person
    222 sg:person.014662317175.19 schema:affiliation grid-institutes:grid.5718.b
    223 schema:familyName Reichenberger
    224 schema:givenName Sven
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662317175.19
    226 rdf:type schema:Person
    227 sg:person.016224320150.48 schema:affiliation grid-institutes:grid.5718.b
    228 schema:familyName Li
    229 schema:givenName Yao
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224320150.48
    231 rdf:type schema:Person
    232 sg:person.0725371511.49 schema:affiliation grid-institutes:grid.5718.b
    233 schema:familyName Prymak
    234 schema:givenName Oleg
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725371511.49
    236 rdf:type schema:Person
    237 sg:pub.10.1007/bf00655899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036784480
    238 https://doi.org/10.1007/bf00655899
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/bf00751800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014515151
    241 https://doi.org/10.1007/bf00751800
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/bf02712791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009281124
    244 https://doi.org/10.1007/bf02712791
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/bf02869315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005694807
    247 https://doi.org/10.1007/bf02869315
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s11085-016-9616-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030591824
    250 https://doi.org/10.1007/s11085-016-9616-1
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s11837-014-1002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036605094
    253 https://doi.org/10.1007/s11837-014-1002-3
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s12274-021-3524-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139064620
    256 https://doi.org/10.1007/s12274-021-3524-7
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/258136a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047184162
    259 https://doi.org/10.1038/258136a0
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nchem.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000053003
    262 https://doi.org/10.1038/nchem.1195
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nmat2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034149236
    265 https://doi.org/10.1038/nmat2802
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nmat4115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037415722
    268 https://doi.org/10.1038/nmat4115
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/s41467-019-11219-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117874726
    271 https://doi.org/10.1038/s41467-019-11219-4
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/s41467-020-15934-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126911553
    274 https://doi.org/10.1038/s41467-020-15934-1
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/s41578-019-0121-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117325344
    277 https://doi.org/10.1038/s41578-019-0121-4
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/s41586-018-0685-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1109895520
    280 https://doi.org/10.1038/s41586-018-0685-y
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/srep34213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007862758
    283 https://doi.org/10.1038/srep34213
    284 rdf:type schema:CreativeWork
    285 grid-institutes:grid.5718.b schema:alternateName Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
    286 Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
    287 schema:name Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
    288 Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
    289 rdf:type schema:Organization
    290 grid-institutes:grid.6884.2 schema:alternateName Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
    291 schema:name Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
    292 rdf:type schema:Organization
    293 grid-institutes:grid.9764.c schema:alternateName Institute for Materials Science, Synthesis and Real Structure, Kiel University, 24143, Kiel, Germany
    294 schema:name Institute for Materials Science, Synthesis and Real Structure, Kiel University, 24143, Kiel, Germany
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...