Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Jinfeng Yang, Min Zhang, Zheng Chen, Xiaofan Du, Suqi Huang, Ben Tang, Tiantian Dong, Han Wu, Zhe Yu, Jianjun Zhang, Guanglei Cui

ABSTRACT

Conventional liquid electrolytes based sodium metal batteries suffer from severe safety hazards owing to electrolyte leakage, inflammability and dendritic sodium deposition. Herein, we report a flame-retardant quasi-solid polymer electrolyte with poly(methyl vinyl ether-alt-maleic anhydride) (P(MVE-alt-MA)) as host, bacterial cellulose (BC) as reinforcement, and triethyl phosphate/vinylene carbonate/sodium perchlorate (TEP/VC/NaClO4) as plasticizer for highly safe sodium metal batteries. The as-obtained quasi-solid polymer electrolyte exhibits superior flame retardancy (self-extinguish within 1 s), complete non-leakage property and wide electrochemical windows (4.4 V). More importantly, Na3V2(PO4)3/Na metal batteries using such polymer electrolyte delivers superior long-term cycling stability (84.4% capacity retention after 1000 cycles) which is significantly better than that (only 2% after 240 cycles) of liquid electrolyte. In addition, this flame-retardant quasi-solid polymer electrolyte provides favorable cycle performance (80.2% capacity retention after 70 cycles at 50 °C and 84.8% capacity retention after 50 cycles at −10 °C) for Na3V2(PO4)3/Na metal batteries. And this battery also displayed a normal charge/discharge property even at −15 °C. These fascinating cycle properties are mainly ascribed to the effective protective layers formed on Na3V2(PO4)3 cathode and sodium metal anode. More thorough investigation elucidates that such flame-retardant quasi-solid polymer electrolyte plays a multifunctional role in the advanced sodium metal batteries: (1) Being involved in the formation of a favorable cathode electrolyte interface (CEI) to inhibit the dissolution of vanadium and maintain the structure integrity of the Na3V2(PO4)3; (2) Participating in building a stable solid electrolyte interface (SEI) to suppress the growth of Na dendrites; (3) Integrating flame-retardance into polymer sodium batteries to enhance flame-resistance, eliminate electrolyte leakage, and thus improve safety of sodium batteries. Based on these results, we further assembled Na3V2(PO4)3/MoS2 pouch cell which can withstand harsh conditions (bended or cut off a corner), confirming the obtained polymer electrolyte with superior non-leakage property. In all, these outstanding characteristics would endow this flame-retardant quasi-solid polymer electrolyte a very promising candidate for highly-safe sodium metal batteries. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-019-2369-9

DOI

http://dx.doi.org/10.1007/s12274-019-2369-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113049638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao University", 
          "id": "https://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China", 
            "School of Material Science and Engineering, Qingdao University, 266071, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Xiaofan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao University", 
          "id": "https://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China", 
            "School of Material Science and Engineering, Qingdao University, 266071, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Suqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Ben", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Tiantian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Han", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Zhe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jianjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
          "id": "https://www.grid.ac/institutes/grid.458500.c", 
          "name": [
            "Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Guanglei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c4ta05451b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201300654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000892669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta07590h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001024082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02375472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008470030", 
          "https://doi.org/10.1007/bf02375472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02375472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008470030", 
          "https://doi.org/10.1007/bf02375472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2005-10076-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011886736", 
          "https://doi.org/10.1140/epje/i2005-10076-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2014.04.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011937015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201600377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016966995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1850854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019902229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1850854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019902229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1600320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020466084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ta03519h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022828568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ensm.2017.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024806519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ta03548a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032074510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.jes111637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037712879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pi.2379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041095610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(76)90077-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043644552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(76)90077-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043644552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ee22258b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044038559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201100904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045769555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cssc.201501605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048578607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ee41379a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048943628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201600066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ee40847g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052467448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2014.04.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053544709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.5b00072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055108000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.6b12688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055132508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am5033605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055146054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp981281o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056127328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp981281o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056127328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/maes.2004.1269687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061380795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3606364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063190775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201605512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074194661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cs00776g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084133641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201700716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084757687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-017-1602-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086070925", 
          "https://doi.org/10.1007/s12274-017-1602-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-017-1602-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086070925", 
          "https://doi.org/10.1007/s12274-017-1602-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201700431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086072322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41560-017-0033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092869864", 
          "https://doi.org/10.1038/s41560-017-0033-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2017.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099618991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201702619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100684546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8ee00186c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101289616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ee03365f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101378656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.8b00722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104254907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsenergylett.8b00609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104404186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201805555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105773217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201805555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105773217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.idairyj.2018.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106117912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2800-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106195822", 
          "https://doi.org/10.1007/s10853-018-2800-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2018.16423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106834245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.8b16129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107664556"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "Conventional liquid electrolytes based sodium metal batteries suffer from severe safety hazards owing to electrolyte leakage, inflammability and dendritic sodium deposition. Herein, we report a flame-retardant quasi-solid polymer electrolyte with poly(methyl vinyl ether-alt-maleic anhydride) (P(MVE-alt-MA)) as host, bacterial cellulose (BC) as reinforcement, and triethyl phosphate/vinylene carbonate/sodium perchlorate (TEP/VC/NaClO4) as plasticizer for highly safe sodium metal batteries. The as-obtained quasi-solid polymer electrolyte exhibits superior flame retardancy (self-extinguish within 1 s), complete non-leakage property and wide electrochemical windows (4.4 V). More importantly, Na3V2(PO4)3/Na metal batteries using such polymer electrolyte delivers superior long-term cycling stability (84.4% capacity retention after 1000 cycles) which is significantly better than that (only 2% after 240 cycles) of liquid electrolyte. In addition, this flame-retardant quasi-solid polymer electrolyte provides favorable cycle performance (80.2% capacity retention after 70 cycles at 50 \u00b0C and 84.8% capacity retention after 50 cycles at \u221210 \u00b0C) for Na3V2(PO4)3/Na metal batteries. And this battery also displayed a normal charge/discharge property even at \u221215 \u00b0C. These fascinating cycle properties are mainly ascribed to the effective protective layers formed on Na3V2(PO4)3 cathode and sodium metal anode. More thorough investigation elucidates that such flame-retardant quasi-solid polymer electrolyte plays a multifunctional role in the advanced sodium metal batteries: (1) Being involved in the formation of a favorable cathode electrolyte interface (CEI) to inhibit the dissolution of vanadium and maintain the structure integrity of the Na3V2(PO4)3; (2) Participating in building a stable solid electrolyte interface (SEI) to suppress the growth of Na dendrites; (3) Integrating flame-retardance into polymer sodium batteries to enhance flame-resistance, eliminate electrolyte leakage, and thus improve safety of sodium batteries. Based on these results, we further assembled Na3V2(PO4)3/MoS2 pouch cell which can withstand harsh conditions (bended or cut off a corner), confirming the obtained polymer electrolyte with superior non-leakage property. In all, these outstanding characteristics would endow this flame-retardant quasi-solid polymer electrolyte a very promising candidate for highly-safe sodium metal batteries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-019-2369-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "015e231fbaf5984f81db4a94104722982f9a050c54477c8691fcdbddf0dbc7fe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-019-2369-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113049638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-019-2369-9", 
      "https://app.dimensions.ai/details/publication/pub.1113049638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12274-019-2369-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2369-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2369-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2369-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2369-9'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      69 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-019-2369-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N780787cb671143e4b536b6263b0a52bf
4 schema:citation sg:pub.10.1007/bf02375472
5 sg:pub.10.1007/s10853-018-2800-8
6 sg:pub.10.1007/s12274-017-1602-7
7 sg:pub.10.1038/s41560-017-0033-8
8 sg:pub.10.1140/epje/i2005-10076-8
9 https://doi.org/10.1002/adma.201100904
10 https://doi.org/10.1002/adma.201605512
11 https://doi.org/10.1002/adma.201700431
12 https://doi.org/10.1002/advs.201600066
13 https://doi.org/10.1002/advs.201600377
14 https://doi.org/10.1002/aenm.201300654
15 https://doi.org/10.1002/aenm.201702619
16 https://doi.org/10.1002/anie.201805555
17 https://doi.org/10.1002/chem.201700716
18 https://doi.org/10.1002/cssc.201501605
19 https://doi.org/10.1002/pi.2379
20 https://doi.org/10.1016/0025-5408(76)90077-5
21 https://doi.org/10.1016/j.electacta.2017.12.040
22 https://doi.org/10.1016/j.ensm.2017.01.002
23 https://doi.org/10.1016/j.idairyj.2018.07.017
24 https://doi.org/10.1016/j.jpowsour.2014.04.063
25 https://doi.org/10.1016/j.jpowsour.2014.04.112
26 https://doi.org/10.1021/acs.chemmater.8b00722
27 https://doi.org/10.1021/acs.jpcc.5b00072
28 https://doi.org/10.1021/acsami.6b12688
29 https://doi.org/10.1021/acsami.8b16129
30 https://doi.org/10.1021/acsenergylett.8b00609
31 https://doi.org/10.1021/am5033605
32 https://doi.org/10.1021/jp981281o
33 https://doi.org/10.1039/c2ee22258b
34 https://doi.org/10.1039/c3ee40847g
35 https://doi.org/10.1039/c3ee41379a
36 https://doi.org/10.1039/c4ta05451b
37 https://doi.org/10.1039/c5ta03519h
38 https://doi.org/10.1039/c5ta03548a
39 https://doi.org/10.1039/c6cs00776g
40 https://doi.org/10.1039/c6ta07590h
41 https://doi.org/10.1039/c7ee03365f
42 https://doi.org/10.1039/c8ee00186c
43 https://doi.org/10.1109/maes.2004.1269687
44 https://doi.org/10.1126/sciadv.1600320
45 https://doi.org/10.1149/1.1850854
46 https://doi.org/10.1149/1.3606364
47 https://doi.org/10.1149/2.jes111637
48 https://doi.org/10.1166/jnn.2018.16423
49 schema:datePublished 2019-03-28
50 schema:datePublishedReg 2019-03-28
51 schema:description Conventional liquid electrolytes based sodium metal batteries suffer from severe safety hazards owing to electrolyte leakage, inflammability and dendritic sodium deposition. Herein, we report a flame-retardant quasi-solid polymer electrolyte with poly(methyl vinyl ether-alt-maleic anhydride) (P(MVE-alt-MA)) as host, bacterial cellulose (BC) as reinforcement, and triethyl phosphate/vinylene carbonate/sodium perchlorate (TEP/VC/NaClO4) as plasticizer for highly safe sodium metal batteries. The as-obtained quasi-solid polymer electrolyte exhibits superior flame retardancy (self-extinguish within 1 s), complete non-leakage property and wide electrochemical windows (4.4 V). More importantly, Na3V2(PO4)3/Na metal batteries using such polymer electrolyte delivers superior long-term cycling stability (84.4% capacity retention after 1000 cycles) which is significantly better than that (only 2% after 240 cycles) of liquid electrolyte. In addition, this flame-retardant quasi-solid polymer electrolyte provides favorable cycle performance (80.2% capacity retention after 70 cycles at 50 °C and 84.8% capacity retention after 50 cycles at −10 °C) for Na3V2(PO4)3/Na metal batteries. And this battery also displayed a normal charge/discharge property even at −15 °C. These fascinating cycle properties are mainly ascribed to the effective protective layers formed on Na3V2(PO4)3 cathode and sodium metal anode. More thorough investigation elucidates that such flame-retardant quasi-solid polymer electrolyte plays a multifunctional role in the advanced sodium metal batteries: (1) Being involved in the formation of a favorable cathode electrolyte interface (CEI) to inhibit the dissolution of vanadium and maintain the structure integrity of the Na3V2(PO4)3; (2) Participating in building a stable solid electrolyte interface (SEI) to suppress the growth of Na dendrites; (3) Integrating flame-retardance into polymer sodium batteries to enhance flame-resistance, eliminate electrolyte leakage, and thus improve safety of sodium batteries. Based on these results, we further assembled Na3V2(PO4)3/MoS2 pouch cell which can withstand harsh conditions (bended or cut off a corner), confirming the obtained polymer electrolyte with superior non-leakage property. In all, these outstanding characteristics would endow this flame-retardant quasi-solid polymer electrolyte a very promising candidate for highly-safe sodium metal batteries.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf sg:journal.1042464
56 schema:name Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability
57 schema:pagination 1-8
58 schema:productId N08b45027fe294a0eaec2cddf2caf9bc8
59 N72b2d7eb6bab44ca9dc30464d298cfd0
60 N84fdf02e9fe74576ad83239d251ba0d0
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113049638
62 https://doi.org/10.1007/s12274-019-2369-9
63 schema:sdDatePublished 2019-04-11T13:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N4d6e5a382f0349eb963a8141fedbad29
66 schema:url https://link.springer.com/10.1007%2Fs12274-019-2369-9
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N08b45027fe294a0eaec2cddf2caf9bc8 schema:name dimensions_id
71 schema:value pub.1113049638
72 rdf:type schema:PropertyValue
73 N15a15924fff34916a7509d3947c0f79f rdf:first N749e152ac56540d581118ab9ed30a524
74 rdf:rest N19ebb543f0004ef89387b1157b2f6aac
75 N19ebb543f0004ef89387b1157b2f6aac rdf:first Nf20ee0a3d1d24672849a206c51ca7ed7
76 rdf:rest Nf39f54cf27ad457e86cfb9adc13d5738
77 N2f370d4bb6ef4848b9ca5528be6ee46a rdf:first Nc872d2ba5e754336a2123e022191503f
78 rdf:rest N368cfcfafcdd4389b31d5abcda0750c1
79 N368cfcfafcdd4389b31d5abcda0750c1 rdf:first N80651da5a6304326a87394b19df6a79f
80 rdf:rest N4479b45dc40c4361898ba0a161f8ccbf
81 N4479b45dc40c4361898ba0a161f8ccbf rdf:first N460fcbf649924836a1419d4b52be8b3a
82 rdf:rest Nae338b2d72a5432990244d32c7b06a27
83 N460fcbf649924836a1419d4b52be8b3a schema:affiliation https://www.grid.ac/institutes/grid.458500.c
84 schema:familyName Du
85 schema:givenName Xiaofan
86 rdf:type schema:Person
87 N4d6e5a382f0349eb963a8141fedbad29 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N5175ecac0a294693878913d51aa9b1b8 rdf:first Nf31a753d78f74fe3bb9092abc8fd4d2e
90 rdf:rest N9da127005c95475ebebdd4fb3e9b9d3e
91 N72b2d7eb6bab44ca9dc30464d298cfd0 schema:name doi
92 schema:value 10.1007/s12274-019-2369-9
93 rdf:type schema:PropertyValue
94 N749e152ac56540d581118ab9ed30a524 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
95 schema:familyName Tang
96 schema:givenName Ben
97 rdf:type schema:Person
98 N780787cb671143e4b536b6263b0a52bf rdf:first N8dd2a112883d45619da4052de6c5ea29
99 rdf:rest N2f370d4bb6ef4848b9ca5528be6ee46a
100 N80651da5a6304326a87394b19df6a79f schema:affiliation https://www.grid.ac/institutes/grid.458500.c
101 schema:familyName Chen
102 schema:givenName Zheng
103 rdf:type schema:Person
104 N84fdf02e9fe74576ad83239d251ba0d0 schema:name readcube_id
105 schema:value 015e231fbaf5984f81db4a94104722982f9a050c54477c8691fcdbddf0dbc7fe
106 rdf:type schema:PropertyValue
107 N8dd2a112883d45619da4052de6c5ea29 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
108 schema:familyName Yang
109 schema:givenName Jinfeng
110 rdf:type schema:Person
111 N9af135806e3c4b6187603330db454644 rdf:first Na5d536ea74034b5a97d01812277b3f3c
112 rdf:rest N5175ecac0a294693878913d51aa9b1b8
113 N9da127005c95475ebebdd4fb3e9b9d3e rdf:first Nf35fd193a9fe4d2fb0ca0563bc7bd8c7
114 rdf:rest rdf:nil
115 Na5d536ea74034b5a97d01812277b3f3c schema:affiliation https://www.grid.ac/institutes/grid.458500.c
116 schema:familyName Yu
117 schema:givenName Zhe
118 rdf:type schema:Person
119 Nabd7069bc0614256b1e67add6fa513fb schema:affiliation https://www.grid.ac/institutes/grid.410645.2
120 schema:familyName Huang
121 schema:givenName Suqi
122 rdf:type schema:Person
123 Nae338b2d72a5432990244d32c7b06a27 rdf:first Nabd7069bc0614256b1e67add6fa513fb
124 rdf:rest N15a15924fff34916a7509d3947c0f79f
125 Nc872d2ba5e754336a2123e022191503f schema:affiliation https://www.grid.ac/institutes/grid.410645.2
126 schema:familyName Zhang
127 schema:givenName Min
128 rdf:type schema:Person
129 Needa91f9db2f4fd7beadb667266659f0 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
130 schema:familyName Wu
131 schema:givenName Han
132 rdf:type schema:Person
133 Nf20ee0a3d1d24672849a206c51ca7ed7 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
134 schema:familyName Dong
135 schema:givenName Tiantian
136 rdf:type schema:Person
137 Nf31a753d78f74fe3bb9092abc8fd4d2e schema:affiliation https://www.grid.ac/institutes/grid.458500.c
138 schema:familyName Zhang
139 schema:givenName Jianjun
140 rdf:type schema:Person
141 Nf35fd193a9fe4d2fb0ca0563bc7bd8c7 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
142 schema:familyName Cui
143 schema:givenName Guanglei
144 rdf:type schema:Person
145 Nf39f54cf27ad457e86cfb9adc13d5738 rdf:first Needa91f9db2f4fd7beadb667266659f0
146 rdf:rest N9af135806e3c4b6187603330db454644
147 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
148 schema:name Chemical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
151 schema:name Physical Chemistry (incl. Structural)
152 rdf:type schema:DefinedTerm
153 sg:journal.1042464 schema:issn 1998-0000
154 1998-0124
155 schema:name Nano Research
156 rdf:type schema:Periodical
157 sg:pub.10.1007/bf02375472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008470030
158 https://doi.org/10.1007/bf02375472
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10853-018-2800-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106195822
161 https://doi.org/10.1007/s10853-018-2800-8
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s12274-017-1602-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086070925
164 https://doi.org/10.1007/s12274-017-1602-7
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/s41560-017-0033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092869864
167 https://doi.org/10.1038/s41560-017-0033-8
168 rdf:type schema:CreativeWork
169 sg:pub.10.1140/epje/i2005-10076-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011886736
170 https://doi.org/10.1140/epje/i2005-10076-8
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/adma.201100904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045769555
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/adma.201605512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074194661
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/adma.201700431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086072322
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/advs.201600066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927514
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/advs.201600377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016966995
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/aenm.201300654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000892669
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/aenm.201702619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100684546
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/anie.201805555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105773217
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/chem.201700716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084757687
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/cssc.201501605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048578607
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/pi.2379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041095610
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/0025-5408(76)90077-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043644552
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.electacta.2017.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099618991
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ensm.2017.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024806519
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.idairyj.2018.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106117912
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jpowsour.2014.04.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011937015
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jpowsour.2014.04.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053544709
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/acs.chemmater.8b00722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104254907
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/acs.jpcc.5b00072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055108000
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/acsami.6b12688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055132508
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/acsami.8b16129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107664556
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/acsenergylett.8b00609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104404186
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/am5033605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055146054
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/jp981281o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056127328
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1039/c2ee22258b schema:sameAs https://app.dimensions.ai/details/publication/pub.1044038559
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1039/c3ee40847g schema:sameAs https://app.dimensions.ai/details/publication/pub.1052467448
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1039/c3ee41379a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048943628
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1039/c4ta05451b schema:sameAs https://app.dimensions.ai/details/publication/pub.1000149805
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1039/c5ta03519h schema:sameAs https://app.dimensions.ai/details/publication/pub.1022828568
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1039/c5ta03548a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032074510
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1039/c6cs00776g schema:sameAs https://app.dimensions.ai/details/publication/pub.1084133641
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1039/c6ta07590h schema:sameAs https://app.dimensions.ai/details/publication/pub.1001024082
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1039/c7ee03365f schema:sameAs https://app.dimensions.ai/details/publication/pub.1101378656
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1039/c8ee00186c schema:sameAs https://app.dimensions.ai/details/publication/pub.1101289616
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/maes.2004.1269687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061380795
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/sciadv.1600320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020466084
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1149/1.1850854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019902229
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1149/1.3606364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063190775
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1149/2.jes111637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037712879
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1166/jnn.2018.16423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106834245
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.410645.2 schema:alternateName Qingdao University
253 schema:name Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
254 School of Material Science and Engineering, Qingdao University, 266071, Qingdao, China
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
257 schema:name Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
258 Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.458500.c schema:alternateName Qingdao Institute of Bioenergy and Bioprocess Technology
261 schema:name Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...