Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-08

AUTHORS

Xiaoshuai Wang, Chao Zhou, Run Shi, Qinqin Liu, Geoffrey I. N. Waterhouse, Lizhu Wu, Chen-Ho Tung, Tierui Zhang

ABSTRACT

A simple one-step thermal polymerization method was developed for synthesis of holey graphitic carbon nitride nanotubes, involving direct heating of mixtures of melamine and urea or melamine and cyanuric acid in specific mass ratios. Supramolecular structures formed between the precursor molecules guided nanotube formation. The porous and nanotubular structure of the nanotubes facilitated efficient charge carrier migration and separation, thereby enhancing photocatalytic H2 production in 20 vol.% lactic acid under visible light irradiation. Nanotubes synthesized using melamine and urea in a 1:10 mass ratio (denoted herein as CN-MU nanotubes) exhibited a photocatalytic hydrogen production rate of 1,073.6 μmol·h−1·g−1 with Pt as the cocatalyst, a rate of 4.7 and 3.1 times higher than traditional Pt/g-C3N4 photocatalysts prepared from graphitic carbon nitride (g-C3N4) obtained by direct thermal polymerization of melamine or urea, respectively. On the basis of their outstanding performance for photocatalytic H2 production, it is envisaged that the holey g-C3N4 nanotubes will find widespread uptake in other areas, including photocatalytic CO2 reduction, dye-sensitized solar cells and photoelectrochemical sensors. More... »

PAGES

1-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-019-2357-0

DOI

http://dx.doi.org/10.1007/s12274-019-2357-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112634448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaoshuai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Chao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Run", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qinqin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Auckland", 
          "id": "https://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "School of Chemical Sciences, The University of Auckland, 1142, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waterhouse", 
        "givenName": "Geoffrey I. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Lizhu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tung", 
        "givenName": "Chen-Ho", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tierui", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep01943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092376", 
          "https://doi.org/10.1038/srep01943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta08310b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001578667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201601660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003349869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201503221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004844449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja308249k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006793573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sc00475h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201200922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007192124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja103798k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013513167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja103798k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013513167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cc48374f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018622790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201502057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020370561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b311390f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021256056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja411321s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025355591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201411170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029152869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee01895a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029161045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030051014", 
          "https://doi.org/10.1038/nmat2317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201400573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035119124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201409080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035996905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ta14576j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037101294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee02650d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037207894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/18/11/115605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042230483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am403653a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044473955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1jm12620b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046661058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr05341a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047742143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cc35862j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049139889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2nr30777d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050271950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra12740d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050884809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-014-0600-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051437712", 
          "https://doi.org/10.1007/s12274-014-0600-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sc00826j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052730819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2016.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053038332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.6b00075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055085267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b07831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055137679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs400863c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055422491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0357689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0357689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja102866p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja102866p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja402521s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055854449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp402062d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056094436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201605148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083738986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-018-2003-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100916727", 
          "https://doi.org/10.1007/s12274-018-2003-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-018-2003-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100916727", 
          "https://doi.org/10.1007/s12274-018-2003-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-08", 
    "datePublishedReg": "2019-03-08", 
    "description": "A simple one-step thermal polymerization method was developed for synthesis of holey graphitic carbon nitride nanotubes, involving direct heating of mixtures of melamine and urea or melamine and cyanuric acid in specific mass ratios. Supramolecular structures formed between the precursor molecules guided nanotube formation. The porous and nanotubular structure of the nanotubes facilitated efficient charge carrier migration and separation, thereby enhancing photocatalytic H2 production in 20 vol.% lactic acid under visible light irradiation. Nanotubes synthesized using melamine and urea in a 1:10 mass ratio (denoted herein as CN-MU nanotubes) exhibited a photocatalytic hydrogen production rate of 1,073.6 \u03bcmol\u00b7h\u22121\u00b7g\u22121 with Pt as the cocatalyst, a rate of 4.7 and 3.1 times higher than traditional Pt/g-C3N4 photocatalysts prepared from graphitic carbon nitride (g-C3N4) obtained by direct thermal polymerization of melamine or urea, respectively. On the basis of their outstanding performance for photocatalytic H2 production, it is envisaged that the holey g-C3N4 nanotubes will find widespread uptake in other areas, including photocatalytic CO2 reduction, dye-sensitized solar cells and photoelectrochemical sensors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-019-2357-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance", 
    "pagination": "1-5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3d4f4a6987b99db531de952c57a9bf1c8eae453b828253d87dc8d3f1fb92255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-019-2357-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112634448"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-019-2357-0", 
      "https://app.dimensions.ai/details/publication/pub.1112634448"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11719_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12274-019-2357-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2357-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2357-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2357-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-019-2357-0'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      62 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-019-2357-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7d1b4484d94a4956b0213fa6bad83544
4 schema:citation sg:pub.10.1007/s12274-014-0600-2
5 sg:pub.10.1007/s12274-018-2003-2
6 sg:pub.10.1038/nmat2317
7 sg:pub.10.1038/srep01943
8 https://doi.org/10.1002/adfm.201200922
9 https://doi.org/10.1002/adfm.201503221
10 https://doi.org/10.1002/adma.201400573
11 https://doi.org/10.1002/adma.201502057
12 https://doi.org/10.1002/adma.201605148
13 https://doi.org/10.1002/anie.201409080
14 https://doi.org/10.1002/anie.201411170
15 https://doi.org/10.1002/smll.201601660
16 https://doi.org/10.1016/j.nanoen.2016.05.031
17 https://doi.org/10.1021/acs.chemrev.6b00075
18 https://doi.org/10.1021/acsnano.5b07831
19 https://doi.org/10.1021/am403653a
20 https://doi.org/10.1021/cs400863c
21 https://doi.org/10.1021/ja0357689
22 https://doi.org/10.1021/ja102866p
23 https://doi.org/10.1021/ja103798k
24 https://doi.org/10.1021/ja308249k
25 https://doi.org/10.1021/ja402521s
26 https://doi.org/10.1021/ja411321s
27 https://doi.org/10.1021/jp402062d
28 https://doi.org/10.1039/b311390f
29 https://doi.org/10.1039/c0sc00475h
30 https://doi.org/10.1039/c1jm12620b
31 https://doi.org/10.1039/c2cc35862j
32 https://doi.org/10.1039/c2nr30777d
33 https://doi.org/10.1039/c3cc48374f
34 https://doi.org/10.1039/c3ta14576j
35 https://doi.org/10.1039/c4nr05341a
36 https://doi.org/10.1039/c4ra12740d
37 https://doi.org/10.1039/c4sc00826j
38 https://doi.org/10.1039/c5ee01895a
39 https://doi.org/10.1039/c5ee02650d
40 https://doi.org/10.1039/c6ta08310b
41 https://doi.org/10.1088/0957-4484/18/11/115605
42 schema:datePublished 2019-03-08
43 schema:datePublishedReg 2019-03-08
44 schema:description A simple one-step thermal polymerization method was developed for synthesis of holey graphitic carbon nitride nanotubes, involving direct heating of mixtures of melamine and urea or melamine and cyanuric acid in specific mass ratios. Supramolecular structures formed between the precursor molecules guided nanotube formation. The porous and nanotubular structure of the nanotubes facilitated efficient charge carrier migration and separation, thereby enhancing photocatalytic H2 production in 20 vol.% lactic acid under visible light irradiation. Nanotubes synthesized using melamine and urea in a 1:10 mass ratio (denoted herein as CN-MU nanotubes) exhibited a photocatalytic hydrogen production rate of 1,073.6 μmol·h−1·g−1 with Pt as the cocatalyst, a rate of 4.7 and 3.1 times higher than traditional Pt/g-C3N4 photocatalysts prepared from graphitic carbon nitride (g-C3N4) obtained by direct thermal polymerization of melamine or urea, respectively. On the basis of their outstanding performance for photocatalytic H2 production, it is envisaged that the holey g-C3N4 nanotubes will find widespread uptake in other areas, including photocatalytic CO2 reduction, dye-sensitized solar cells and photoelectrochemical sensors.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1042464
49 schema:name Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance
50 schema:pagination 1-5
51 schema:productId N123b9bfc50dc4a03a378e1ed61b330a3
52 N578505ab6c2a4040ab328578268e683d
53 N7a70ff81371f45c999f682685d13b479
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112634448
55 https://doi.org/10.1007/s12274-019-2357-0
56 schema:sdDatePublished 2019-04-11T11:20
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nab37c920cd1a43ca9a3663a7c8f50864
59 schema:url https://link.springer.com/10.1007%2Fs12274-019-2357-0
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N048a8cc0754e483e9f6045b757b4908e rdf:first N1996b322a29c4d2e9f861ac7ea004d17
64 rdf:rest N92dcfb6022c74b30a6130e467a69785b
65 N123b9bfc50dc4a03a378e1ed61b330a3 schema:name dimensions_id
66 schema:value pub.1112634448
67 rdf:type schema:PropertyValue
68 N17a100f0a8a3423490b12d44f3058e67 rdf:first N7379b40aca9f4bf0bdeb5d167c197466
69 rdf:rest N8e6b32fcc9024755aa115db429949703
70 N1996b322a29c4d2e9f861ac7ea004d17 schema:affiliation https://www.grid.ac/institutes/grid.458502.e
71 schema:familyName Tung
72 schema:givenName Chen-Ho
73 rdf:type schema:Person
74 N27a2fbfeb44045219374cfec00d7be79 schema:affiliation https://www.grid.ac/institutes/grid.458502.e
75 schema:familyName Wu
76 schema:givenName Lizhu
77 rdf:type schema:Person
78 N2de198beae14471da7d30f1a0e5674a7 rdf:first Nb0e1b9105d9942b3b1f8c763c1e016fd
79 rdf:rest N17a100f0a8a3423490b12d44f3058e67
80 N470a11de21c64f86b7d06ba3a80f51a0 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
81 schema:familyName Zhang
82 schema:givenName Tierui
83 rdf:type schema:Person
84 N578505ab6c2a4040ab328578268e683d schema:name readcube_id
85 schema:value d3d4f4a6987b99db531de952c57a9bf1c8eae453b828253d87dc8d3f1fb92255
86 rdf:type schema:PropertyValue
87 N6bc15b0bdd5f4e12a3f4f79d30ed4d16 schema:affiliation https://www.grid.ac/institutes/grid.458502.e
88 schema:familyName Shi
89 schema:givenName Run
90 rdf:type schema:Person
91 N7379b40aca9f4bf0bdeb5d167c197466 schema:affiliation https://www.grid.ac/institutes/grid.9654.e
92 schema:familyName Waterhouse
93 schema:givenName Geoffrey I. N.
94 rdf:type schema:Person
95 N790f675d75f2443792925c91e81ec3be schema:affiliation https://www.grid.ac/institutes/grid.458502.e
96 schema:familyName Zhou
97 schema:givenName Chao
98 rdf:type schema:Person
99 N7a70ff81371f45c999f682685d13b479 schema:name doi
100 schema:value 10.1007/s12274-019-2357-0
101 rdf:type schema:PropertyValue
102 N7d1b4484d94a4956b0213fa6bad83544 rdf:first Ndd9a00c5b4734d49a909cf38adfd9cf3
103 rdf:rest Nac19c4cffb5d42de91efabb632fe3d6a
104 N8e6b32fcc9024755aa115db429949703 rdf:first N27a2fbfeb44045219374cfec00d7be79
105 rdf:rest N048a8cc0754e483e9f6045b757b4908e
106 N92dcfb6022c74b30a6130e467a69785b rdf:first N470a11de21c64f86b7d06ba3a80f51a0
107 rdf:rest rdf:nil
108 Nab37c920cd1a43ca9a3663a7c8f50864 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nac19c4cffb5d42de91efabb632fe3d6a rdf:first N790f675d75f2443792925c91e81ec3be
111 rdf:rest Ne7d941c9f4654e96ad90773435468d81
112 Nb0e1b9105d9942b3b1f8c763c1e016fd schema:affiliation https://www.grid.ac/institutes/grid.440785.a
113 schema:familyName Liu
114 schema:givenName Qinqin
115 rdf:type schema:Person
116 Ndd9a00c5b4734d49a909cf38adfd9cf3 schema:affiliation https://www.grid.ac/institutes/grid.440785.a
117 schema:familyName Wang
118 schema:givenName Xiaoshuai
119 rdf:type schema:Person
120 Ne7d941c9f4654e96ad90773435468d81 rdf:first N6bc15b0bdd5f4e12a3f4f79d30ed4d16
121 rdf:rest N2de198beae14471da7d30f1a0e5674a7
122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
123 schema:name Chemical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Chemistry (incl. Structural)
127 rdf:type schema:DefinedTerm
128 sg:journal.1042464 schema:issn 1998-0000
129 1998-0124
130 schema:name Nano Research
131 rdf:type schema:Periodical
132 sg:pub.10.1007/s12274-014-0600-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051437712
133 https://doi.org/10.1007/s12274-014-0600-2
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s12274-018-2003-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100916727
136 https://doi.org/10.1007/s12274-018-2003-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nmat2317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030051014
139 https://doi.org/10.1038/nmat2317
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/srep01943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092376
142 https://doi.org/10.1038/srep01943
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adfm.201200922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007192124
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adfm.201503221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004844449
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/adma.201400573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035119124
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/adma.201502057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020370561
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/adma.201605148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083738986
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/anie.201409080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035996905
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/anie.201411170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029152869
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/smll.201601660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003349869
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nanoen.2016.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053038332
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/acs.chemrev.6b00075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085267
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/acsnano.5b07831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137679
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/am403653a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473955
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/cs400863c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055422491
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ja0357689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055833650
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ja102866p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055847366
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ja103798k schema:sameAs https://app.dimensions.ai/details/publication/pub.1013513167
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ja308249k schema:sameAs https://app.dimensions.ai/details/publication/pub.1006793573
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/ja402521s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055854449
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/ja411321s schema:sameAs https://app.dimensions.ai/details/publication/pub.1025355591
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/jp402062d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056094436
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1039/b311390f schema:sameAs https://app.dimensions.ai/details/publication/pub.1021256056
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1039/c0sc00475h schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014999
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1039/c1jm12620b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046661058
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1039/c2cc35862j schema:sameAs https://app.dimensions.ai/details/publication/pub.1049139889
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1039/c2nr30777d schema:sameAs https://app.dimensions.ai/details/publication/pub.1050271950
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/c3cc48374f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018622790
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/c3ta14576j schema:sameAs https://app.dimensions.ai/details/publication/pub.1037101294
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c4nr05341a schema:sameAs https://app.dimensions.ai/details/publication/pub.1047742143
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/c4ra12740d schema:sameAs https://app.dimensions.ai/details/publication/pub.1050884809
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1039/c4sc00826j schema:sameAs https://app.dimensions.ai/details/publication/pub.1052730819
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1039/c5ee01895a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029161045
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1039/c5ee02650d schema:sameAs https://app.dimensions.ai/details/publication/pub.1037207894
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/c6ta08310b schema:sameAs https://app.dimensions.ai/details/publication/pub.1001578667
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1088/0957-4484/18/11/115605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042230483
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
213 schema:name Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
214 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.440785.a schema:alternateName Jiangsu University
217 schema:name Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
218 School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.458502.e schema:alternateName Technical Institute of Physics and Chemistry
221 schema:name Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.9654.e schema:alternateName University of Auckland
224 schema:name School of Chemical Sciences, The University of Auckland, 1142, Auckland, New Zealand
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...