Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Daihong Huh, KyoungSuk Oh, Minjin Kim, Hak-Jong Choi, Dong Suk Kim, Heon Lee

ABSTRACT

Organic-inorganic hybrid perovskite solar cells (PSCs) are attracting tremendous attention for new-generation photovoltaic devices because of their excellent power conversion efficiency and simple fabrication process. One of the various approaches to increase the efficiency of PSCs is to change the material or structure of the carrier transport layer. Here, optically long and electrically short structural concept is proposed to enhance the characteristics of a PSC by employing selectively grown single crystalline TiO2 nanorods. The approach has the merit of increasing the electron-hole separation effectively and enables a thicker active layer to be coated without electrical loss by using TiO2 nanorods as an electron pathway. Moreover, selectively grown TiO2 nanorods increase the optical path of the incident light via scattering effects and enable a smooth coating of the active layer. Nanoimprint lithography and hydrothermal growth were employed to fabricate selectively grown TiO2 nanorod substrates. The fabricated solar cell exhibits an efficiency of 19.86% with a current density, open-circuit voltage, and fill factor of 23.13 mA/cm2, 1.120 V, and 76.69%, respectively. Time-resolved photoluminescence, ultraviolet-visible (UV–Vis) spectroscopy, and the incident photon to current efficiency (IPCE) analysis were conducted to understand the factors responsible for the improvement in characteristics of the fabricated PSCs. More... »

PAGES

601-606

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-018-2263-x

DOI

http://dx.doi.org/10.1007/s12274-018-2263-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110883892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huh", 
        "givenName": "Daihong", 
        "id": "sg:person.012322351164.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322351164.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea", 
            "KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, 689-851, Ulsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "KyoungSuk", 
        "id": "sg:person.015063727537.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063727537.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea", 
            "KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, 689-851, Ulsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Minjin", 
        "id": "sg:person.011622317177.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622317177.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea", 
            "Department of Electrical and Systems Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hak-Jong", 
        "id": "sg:person.016336032523.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336032523.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, 689-851, Ulsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dong Suk", 
        "id": "sg:person.01346725135.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346725135.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Heon", 
        "id": "sg:person.01030770305.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030770305.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200600882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002192141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201200348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005601862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.148451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006550008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.148451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006550008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pip.2369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006717396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1243982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008044950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8078972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009686863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8078972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009686863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pat.662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021916519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pat.662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021916519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022984436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802096a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025365344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802096a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025365344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn5058672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026124405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl400286w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027294190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2009.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028940341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1838726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034671405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035293967", 
          "https://doi.org/10.1038/nnano.2015.230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038126904", 
          "https://doi.org/10.1038/nature12509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ee03182j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040061332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041362972", 
          "https://doi.org/10.1038/nphoton.2013.80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045181228", 
          "https://doi.org/10.1038/nphoton.2014.134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5441.945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046655478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b12849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055129407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b01575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055137850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0567321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056064051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0567321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056064051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0600225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0600225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn9003633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056227141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1506388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057713967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2193653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057845244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.7423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060542889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.7423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060542889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tepm.2003.817714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.66.000515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065153939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201602159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074247759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814317665_0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088780324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2017.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091491594"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Organic-inorganic hybrid perovskite solar cells (PSCs) are attracting tremendous attention for new-generation photovoltaic devices because of their excellent power conversion efficiency and simple fabrication process. One of the various approaches to increase the efficiency of PSCs is to change the material or structure of the carrier transport layer. Here, optically long and electrically short structural concept is proposed to enhance the characteristics of a PSC by employing selectively grown single crystalline TiO2 nanorods. The approach has the merit of increasing the electron-hole separation effectively and enables a thicker active layer to be coated without electrical loss by using TiO2 nanorods as an electron pathway. Moreover, selectively grown TiO2 nanorods increase the optical path of the incident light via scattering effects and enable a smooth coating of the active layer. Nanoimprint lithography and hydrothermal growth were employed to fabricate selectively grown TiO2 nanorod substrates. The fabricated solar cell exhibits an efficiency of 19.86% with a current density, open-circuit voltage, and fill factor of 23.13 mA/cm2, 1.120 V, and 76.69%, respectively. Time-resolved photoluminescence, ultraviolet-visible (UV\u2013Vis) spectroscopy, and the incident photon to current efficiency (IPCE) analysis were conducted to understand the factors responsible for the improvement in characteristics of the fabricated PSCs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-018-2263-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells", 
    "pagination": "601-606", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "916a54484ff7fe4c94f223c6fc02317924a8548e10cfd24f7b2c1eb288eff603"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-018-2263-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110883892"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-018-2263-x", 
      "https://app.dimensions.ai/details/publication/pub.1110883892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99293_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12274-018-2263-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2263-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2263-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2263-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2263-x'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-018-2263-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N46a11ec8ad944a319c451f285b03604e
4 schema:citation sg:pub.10.1038/nature12509
5 sg:pub.10.1038/nmat2629
6 sg:pub.10.1038/nnano.2015.230
7 sg:pub.10.1038/nphoton.2013.80
8 sg:pub.10.1038/nphoton.2014.134
9 https://doi.org/10.1002/adma.200600882
10 https://doi.org/10.1002/aenm.201200348
11 https://doi.org/10.1002/aenm.201602159
12 https://doi.org/10.1002/pat.662
13 https://doi.org/10.1002/pip.2369
14 https://doi.org/10.1016/j.materresbull.2009.01.009
15 https://doi.org/10.1016/j.optmat.2017.04.003
16 https://doi.org/10.1021/acsami.5b12849
17 https://doi.org/10.1021/acsnano.6b01575
18 https://doi.org/10.1021/ja8078972
19 https://doi.org/10.1021/jp0567321
20 https://doi.org/10.1021/nl0600225
21 https://doi.org/10.1021/nl400286w
22 https://doi.org/10.1021/nl802096a
23 https://doi.org/10.1021/nn5058672
24 https://doi.org/10.1021/nn9003633
25 https://doi.org/10.1039/c6ee03182j
26 https://doi.org/10.1063/1.1506388
27 https://doi.org/10.1063/1.2193653
28 https://doi.org/10.1103/physrevb.35.7423
29 https://doi.org/10.1109/tepm.2003.817714
30 https://doi.org/10.1117/12.148451
31 https://doi.org/10.1126/science.1218829
32 https://doi.org/10.1126/science.1243982
33 https://doi.org/10.1126/science.286.5441.945
34 https://doi.org/10.1126/science.aad1015
35 https://doi.org/10.1142/9789814317665_0012
36 https://doi.org/10.1149/1.1838726
37 https://doi.org/10.1364/josa.66.000515
38 schema:datePublished 2019-03
39 schema:datePublishedReg 2019-03-01
40 schema:description Organic-inorganic hybrid perovskite solar cells (PSCs) are attracting tremendous attention for new-generation photovoltaic devices because of their excellent power conversion efficiency and simple fabrication process. One of the various approaches to increase the efficiency of PSCs is to change the material or structure of the carrier transport layer. Here, optically long and electrically short structural concept is proposed to enhance the characteristics of a PSC by employing selectively grown single crystalline TiO2 nanorods. The approach has the merit of increasing the electron-hole separation effectively and enables a thicker active layer to be coated without electrical loss by using TiO2 nanorods as an electron pathway. Moreover, selectively grown TiO2 nanorods increase the optical path of the incident light via scattering effects and enable a smooth coating of the active layer. Nanoimprint lithography and hydrothermal growth were employed to fabricate selectively grown TiO2 nanorod substrates. The fabricated solar cell exhibits an efficiency of 19.86% with a current density, open-circuit voltage, and fill factor of 23.13 mA/cm2, 1.120 V, and 76.69%, respectively. Time-resolved photoluminescence, ultraviolet-visible (UV–Vis) spectroscopy, and the incident photon to current efficiency (IPCE) analysis were conducted to understand the factors responsible for the improvement in characteristics of the fabricated PSCs.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N509ff159626648859726f4505a01d0b4
45 Ncc0d6669aaf54d3fbf1e63dd21aefa07
46 sg:journal.1042464
47 schema:name Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells
48 schema:pagination 601-606
49 schema:productId N1dd6b088b51a4fab805872974083e1fe
50 N5fd88284b9964c6aa51409d884282767
51 Nb55a31290107450f8d2532f76f71c044
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110883892
53 https://doi.org/10.1007/s12274-018-2263-x
54 schema:sdDatePublished 2019-04-11T11:29
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N3154efa1f73d40438d7dc73980b9ddd4
57 schema:url https://link.springer.com/10.1007%2Fs12274-018-2263-x
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1dd6b088b51a4fab805872974083e1fe schema:name doi
62 schema:value 10.1007/s12274-018-2263-x
63 rdf:type schema:PropertyValue
64 N3154efa1f73d40438d7dc73980b9ddd4 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N46a11ec8ad944a319c451f285b03604e rdf:first sg:person.012322351164.25
67 rdf:rest Ne3ee8984e5054ff48d93605e56145b1b
68 N4a35be19eadd46b38784265d30df4a3b rdf:first sg:person.01346725135.80
69 rdf:rest N6c66d2a4a12d4460884e1e82e45da038
70 N509ff159626648859726f4505a01d0b4 schema:volumeNumber 12
71 rdf:type schema:PublicationVolume
72 N5fd88284b9964c6aa51409d884282767 schema:name dimensions_id
73 schema:value pub.1110883892
74 rdf:type schema:PropertyValue
75 N6c66d2a4a12d4460884e1e82e45da038 rdf:first sg:person.01030770305.50
76 rdf:rest rdf:nil
77 Naccda121386945d6b796c9fbef4d0176 rdf:first sg:person.011622317177.60
78 rdf:rest Nb04759bede2541558b7569bda887aa1c
79 Nb04759bede2541558b7569bda887aa1c rdf:first sg:person.016336032523.27
80 rdf:rest N4a35be19eadd46b38784265d30df4a3b
81 Nb55a31290107450f8d2532f76f71c044 schema:name readcube_id
82 schema:value 916a54484ff7fe4c94f223c6fc02317924a8548e10cfd24f7b2c1eb288eff603
83 rdf:type schema:PropertyValue
84 Ncc0d6669aaf54d3fbf1e63dd21aefa07 schema:issueNumber 3
85 rdf:type schema:PublicationIssue
86 Ne3ee8984e5054ff48d93605e56145b1b rdf:first sg:person.015063727537.84
87 rdf:rest Naccda121386945d6b796c9fbef4d0176
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1042464 schema:issn 1998-0000
95 1998-0124
96 schema:name Nano Research
97 rdf:type schema:Periodical
98 sg:person.01030770305.50 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
99 schema:familyName Lee
100 schema:givenName Heon
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030770305.50
102 rdf:type schema:Person
103 sg:person.011622317177.60 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
104 schema:familyName Kim
105 schema:givenName Minjin
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622317177.60
107 rdf:type schema:Person
108 sg:person.012322351164.25 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
109 schema:familyName Huh
110 schema:givenName Daihong
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322351164.25
112 rdf:type schema:Person
113 sg:person.01346725135.80 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
114 schema:familyName Kim
115 schema:givenName Dong Suk
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346725135.80
117 rdf:type schema:Person
118 sg:person.015063727537.84 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
119 schema:familyName Oh
120 schema:givenName KyoungSuk
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063727537.84
122 rdf:type schema:Person
123 sg:person.016336032523.27 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
124 schema:familyName Choi
125 schema:givenName Hak-Jong
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336032523.27
127 rdf:type schema:Person
128 sg:pub.10.1038/nature12509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038126904
129 https://doi.org/10.1038/nature12509
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nmat2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990558
132 https://doi.org/10.1038/nmat2629
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nnano.2015.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035293967
135 https://doi.org/10.1038/nnano.2015.230
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nphoton.2013.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041362972
138 https://doi.org/10.1038/nphoton.2013.80
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nphoton.2014.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045181228
141 https://doi.org/10.1038/nphoton.2014.134
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/adma.200600882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002192141
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/aenm.201200348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005601862
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/aenm.201602159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074247759
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/pat.662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021916519
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/pip.2369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006717396
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.materresbull.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028940341
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.optmat.2017.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091491594
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/acsami.5b12849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055129407
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/acsnano.6b01575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137850
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/ja8078972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009686863
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/jp0567321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056064051
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nl0600225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216601
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nl400286w schema:sameAs https://app.dimensions.ai/details/publication/pub.1027294190
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nl802096a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025365344
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/nn5058672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026124405
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/nn9003633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056227141
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1039/c6ee03182j schema:sameAs https://app.dimensions.ai/details/publication/pub.1040061332
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.1506388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713967
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.2193653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845244
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.35.7423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060542889
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tepm.2003.817714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604036
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1117/12.148451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006550008
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1218829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022984436
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1243982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008044950
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.286.5441.945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046655478
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.aad1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034671405
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1142/9789814317665_0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088780324
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1149/1.1838726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033780312
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1364/josa.66.000515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065153939
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
202 schema:name Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
205 schema:name Department of Electrical and Systems Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
206 Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.418979.a schema:alternateName Korea Institute of Energy Research
209 schema:name Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, 136-701, Seoul, Republic of Korea
210 KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, 689-851, Ulsan, Republic of Korea
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...