Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Zahir Muhammad, Kejun Mu, Haifeng Lv, Chuanqiang Wu, Zia ur Rehman, Muhammad Habib, Zhe Sun, Xiaojun Wu, Li Song

ABSTRACT

Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations clearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current–voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications. More... »

PAGES

4914-4922

References to SciGraph publications

  • 2014-09. Two-dimensional materials: Atomically thin p-n junctions in NATURE NANOTECHNOLOGY
  • 2013-12-22. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 in NATURE NANOTECHNOLOGY
  • 2014-12. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors in NATURE MATERIALS
  • 2014-12. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor in NATURE MATERIALS
  • 2015-11-16. Charge density wave transition in single-layer titanium diselenide in NATURE COMMUNICATIONS
  • 2014-07. Energy gaps in high-transition-temperature cuprate superconductors in NATURE PHYSICS
  • 2012-06. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors in THE EUROPEAN PHYSICAL JOURNAL B
  • 2006-08. Superconductivity in CuxTiSe2 in NATURE PHYSICS
  • 2014-11. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor in NATURE PHYSICS
  • 2018-04. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics in NATURE NANOTECHNOLOGY
  • 2014-10. Graphene spintronics in NATURE NANOTECHNOLOGY
  • 2014-12. Two-dimensional material nanophotonics in NATURE PHOTONICS
  • 2017-12. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials in NANO CONVERGENCE
  • 2014-12. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2 in NATURE COMMUNICATIONS
  • 2018-03. Monolayer atomic crystal molecular superlattices in NATURE
  • 1980-09. Photo-intercalation: Possible application in solar energy devices in JOURNAL OF PHYSICS D
  • 2012-08. Control of valley polarization in monolayer MoS2 by optical helicity in NATURE NANOTECHNOLOGY
  • 2012-08. Valley polarization in MoS2 monolayers by optical pumping in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12274-018-2081-1

    DOI

    http://dx.doi.org/10.1007/s12274-018-2081-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103882618


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muhammad", 
            "givenName": "Zahir", 
            "id": "sg:person.015311136733.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311136733.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mu", 
            "givenName": "Kejun", 
            "id": "sg:person.011267316207.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267316207.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "CAS Key Laboratory of Materials for Energy Conservation, Synergetic Innovation Centre of Quantum Information & Quantum Physics, CAS Center for Excellence in Nanoscience, and Department of Material Science and Engineering, University of Science and Technology of China, 230026, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lv", 
            "givenName": "Haifeng", 
            "id": "sg:person.013326252533.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013326252533.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Chuanqiang", 
            "id": "sg:person.0625647065.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625647065.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "ur Rehman", 
            "givenName": "Zia", 
            "id": "sg:person.016654743513.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654743513.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Habib", 
            "givenName": "Muhammad", 
            "id": "sg:person.07515205401.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515205401.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Zhe", 
            "id": "sg:person.0712516471.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712516471.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "CAS Key Laboratory of Materials for Energy Conservation, Synergetic Innovation Centre of Quantum Information & Quantum Physics, CAS Center for Excellence in Nanoscience, and Department of Material Science and Engineering, University of Science and Technology of China, 230026, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Xiaojun", 
            "id": "sg:person.0734146202.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734146202.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Li", 
            "id": "sg:person.01176070666.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevb.84.153402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004102128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.153402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004102128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2014.271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006595845", 
              "https://doi.org/10.1038/nphoton.2014.271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/26/30/304002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008205289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.201300125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011093575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1723695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011664987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.elspec.2012.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017676892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018879371", 
              "https://doi.org/10.1038/nphys3105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2012-30070-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021213474", 
              "https://doi.org/10.1140/epjb/e2012-30070-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022386904", 
              "https://doi.org/10.1038/nnano.2013.277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.106801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023656938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.106801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023656938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025332418", 
              "https://doi.org/10.1038/ncomms5673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.201400128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.226801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026041336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.226801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026041336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027952436", 
              "https://doi.org/10.1038/nnano.2012.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1235547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030349025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.205302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030578033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.205302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030578033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903868w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031417418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903868w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031417418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6tc00254d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032068675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(69)90045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032074371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(69)90045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032074371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.046802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033070906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.046802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033070906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nsr/nwu078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033118741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.066802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036808302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.066802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036808302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn400280c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038090434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038550073", 
              "https://doi.org/10.1038/nnano.2012.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl502557g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039223016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b03481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040238109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.5b05556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041402413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043389657", 
              "https://doi.org/10.1038/nphys3009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043969832", 
              "https://doi.org/10.1038/nnano.2014.214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044562983", 
              "https://doi.org/10.1038/nphys360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044562983", 
              "https://doi.org/10.1038/nphys360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.progsurf.2014.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046725391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4cs00182f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047656105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048227383", 
              "https://doi.org/10.1038/ncomms9943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049265812", 
              "https://doi.org/10.1038/nnano.2014.186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050016353", 
              "https://doi.org/10.1038/nmat4064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.146401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050869436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.146401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050869436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051148621", 
              "https://doi.org/10.1038/nmat4061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.216805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052387138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.216805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052387138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aenm.201500744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052769107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00899572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053205642", 
              "https://doi.org/10.1007/bf00899572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.196802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053264408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.196802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053264408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b02635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055120904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b03278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055120995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.5b03807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055874062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3672219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057996959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.94128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058134267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060636502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060636502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.241201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.241201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.216602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.216602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060762089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060762089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1201607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062464420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b06144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079391869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b04775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079400596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b04814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083401067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b04698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083853918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b00509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084124051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40580-017-0100-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084253059", 
              "https://doi.org/10.1186/s40580-017-0100-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40580-017-0100-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084253059", 
              "https://doi.org/10.1186/s40580-017-0100-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40580-017-0100-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084253059", 
              "https://doi.org/10.1186/s40580-017-0100-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.144505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084604135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.144505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084604135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.7b08350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100270061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.7b08350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100270061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.7b08350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100270061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b01548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100618451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0069-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101201669", 
              "https://doi.org/10.1038/s41565-018-0069-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0069-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101201669", 
              "https://doi.org/10.1038/s41565-018-0069-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101357979", 
              "https://doi.org/10.1038/nature25774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101357979", 
              "https://doi.org/10.1038/nature25774"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations clearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current\u2013voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12274-018-2081-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7197206", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042464", 
            "issn": [
              "1998-0124", 
              "1998-0000"
            ], 
            "name": "Nano Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation", 
        "pagination": "4914-4922", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "92e5abe992a2e2e1177de085cb32d69991a81a32d54de352ad10a5b86bbf21c1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12274-018-2081-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103882618"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12274-018-2081-1", 
          "https://app.dimensions.ai/details/publication/pub.1103882618"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54319_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12274-018-2081-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2081-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2081-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2081-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-018-2081-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    324 TRIPLES      21 PREDICATES      89 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12274-018-2081-1 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nde941d72ce704fa7b6c18548ed70739d
    4 schema:citation sg:pub.10.1007/bf00899572
    5 sg:pub.10.1038/nature25774
    6 sg:pub.10.1038/ncomms5673
    7 sg:pub.10.1038/ncomms9943
    8 sg:pub.10.1038/nmat4061
    9 sg:pub.10.1038/nmat4064
    10 sg:pub.10.1038/nnano.2012.95
    11 sg:pub.10.1038/nnano.2012.96
    12 sg:pub.10.1038/nnano.2013.277
    13 sg:pub.10.1038/nnano.2014.186
    14 sg:pub.10.1038/nnano.2014.214
    15 sg:pub.10.1038/nphoton.2014.271
    16 sg:pub.10.1038/nphys3009
    17 sg:pub.10.1038/nphys3105
    18 sg:pub.10.1038/nphys360
    19 sg:pub.10.1038/s41565-018-0069-3
    20 sg:pub.10.1140/epjb/e2012-30070-x
    21 sg:pub.10.1186/s40580-017-0100-7
    22 https://doi.org/10.1002/adfm.201300125
    23 https://doi.org/10.1002/aenm.201500744
    24 https://doi.org/10.1002/andp.201400128
    25 https://doi.org/10.1016/0022-3697(69)90045-6
    26 https://doi.org/10.1016/j.elspec.2012.12.010
    27 https://doi.org/10.1016/j.progsurf.2014.11.001
    28 https://doi.org/10.1021/acs.nanolett.5b02635
    29 https://doi.org/10.1021/acs.nanolett.5b03278
    30 https://doi.org/10.1021/acs.nanolett.5b03481
    31 https://doi.org/10.1021/acs.nanolett.6b04698
    32 https://doi.org/10.1021/acs.nanolett.6b04775
    33 https://doi.org/10.1021/acs.nanolett.6b04814
    34 https://doi.org/10.1021/acs.nanolett.7b00509
    35 https://doi.org/10.1021/acs.nanolett.7b01548
    36 https://doi.org/10.1021/acsnano.5b05556
    37 https://doi.org/10.1021/acsnano.6b06144
    38 https://doi.org/10.1021/acsnano.7b08350
    39 https://doi.org/10.1021/jacs.5b03807
    40 https://doi.org/10.1021/nl502557g
    41 https://doi.org/10.1021/nl903868w
    42 https://doi.org/10.1021/nn400280c
    43 https://doi.org/10.1039/c4cs00182f
    44 https://doi.org/10.1039/c6tc00254d
    45 https://doi.org/10.1063/1.1723695
    46 https://doi.org/10.1063/1.3672219
    47 https://doi.org/10.1063/1.94128
    48 https://doi.org/10.1088/0957-4484/26/30/304002
    49 https://doi.org/10.1093/nsr/nwu078
    50 https://doi.org/10.1103/physrevb.84.075335
    51 https://doi.org/10.1103/physrevb.84.153402
    52 https://doi.org/10.1103/physrevb.85.205302
    53 https://doi.org/10.1103/physrevb.86.241201
    54 https://doi.org/10.1103/physrevb.95.144505
    55 https://doi.org/10.1103/physrevlett.107.216602
    56 https://doi.org/10.1103/physrevlett.108.196802
    57 https://doi.org/10.1103/physrevlett.109.066802
    58 https://doi.org/10.1103/physrevlett.111.106801
    59 https://doi.org/10.1103/physrevlett.111.126801
    60 https://doi.org/10.1103/physrevlett.111.216805
    61 https://doi.org/10.1103/physrevlett.114.046802
    62 https://doi.org/10.1103/physrevlett.95.226801
    63 https://doi.org/10.1103/physrevlett.99.146401
    64 https://doi.org/10.1126/science.1201607
    65 https://doi.org/10.1126/science.1235547
    66 schema:datePublished 2018-09
    67 schema:datePublishedReg 2018-09-01
    68 schema:description Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations clearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current–voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree true
    72 schema:isPartOf N3a204ccc35f942ac819f3f40a462f206
    73 Nba7847cae34744ab9ed458a0559a162a
    74 sg:journal.1042464
    75 schema:name Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation
    76 schema:pagination 4914-4922
    77 schema:productId N3885902e57e54cc890383764431b6222
    78 N5e9eb7f75df248dfa2a69fd3ed406693
    79 Ne2225d85a3014538a00d7c5d6350f200
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103882618
    81 https://doi.org/10.1007/s12274-018-2081-1
    82 schema:sdDatePublished 2019-04-11T10:19
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher Nf7fbcdeb920441b2bf507f361eca898e
    85 schema:url https://link.springer.com/10.1007%2Fs12274-018-2081-1
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N0ed13a18891740cbab41a8a523e4229a rdf:first sg:person.07515205401.44
    90 rdf:rest Nb235cc0fabff4c4b9cd12b915eb5a0b1
    91 N13b839ca19af41c7be70caa420613d57 rdf:first sg:person.013326252533.33
    92 rdf:rest N264e6ee46f874c56a12bb3522b7abfcb
    93 N264e6ee46f874c56a12bb3522b7abfcb rdf:first sg:person.0625647065.69
    94 rdf:rest N9826947fdfcd40498587ac9ed630f75d
    95 N3885902e57e54cc890383764431b6222 schema:name readcube_id
    96 schema:value 92e5abe992a2e2e1177de085cb32d69991a81a32d54de352ad10a5b86bbf21c1
    97 rdf:type schema:PropertyValue
    98 N3a204ccc35f942ac819f3f40a462f206 schema:issueNumber 9
    99 rdf:type schema:PublicationIssue
    100 N3fb70e2f65744d6ba5a1cff5ecd5fef1 rdf:first sg:person.01176070666.37
    101 rdf:rest rdf:nil
    102 N5e9eb7f75df248dfa2a69fd3ed406693 schema:name doi
    103 schema:value 10.1007/s12274-018-2081-1
    104 rdf:type schema:PropertyValue
    105 N9826947fdfcd40498587ac9ed630f75d rdf:first sg:person.016654743513.59
    106 rdf:rest N0ed13a18891740cbab41a8a523e4229a
    107 Nb235cc0fabff4c4b9cd12b915eb5a0b1 rdf:first sg:person.0712516471.80
    108 rdf:rest Ne0ade58d22db41518ce010ae860287bb
    109 Nba7847cae34744ab9ed458a0559a162a schema:volumeNumber 11
    110 rdf:type schema:PublicationVolume
    111 Nde941d72ce704fa7b6c18548ed70739d rdf:first sg:person.015311136733.28
    112 rdf:rest Ne23d91e7dc6443c88b425e7257c38e7b
    113 Ne0ade58d22db41518ce010ae860287bb rdf:first sg:person.0734146202.61
    114 rdf:rest N3fb70e2f65744d6ba5a1cff5ecd5fef1
    115 Ne2225d85a3014538a00d7c5d6350f200 schema:name dimensions_id
    116 schema:value pub.1103882618
    117 rdf:type schema:PropertyValue
    118 Ne23d91e7dc6443c88b425e7257c38e7b rdf:first sg:person.011267316207.98
    119 rdf:rest N13b839ca19af41c7be70caa420613d57
    120 Nf7fbcdeb920441b2bf507f361eca898e schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Chemical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Physical Chemistry (incl. Structural)
    127 rdf:type schema:DefinedTerm
    128 sg:grant.7197206 http://pending.schema.org/fundedItem sg:pub.10.1007/s12274-018-2081-1
    129 rdf:type schema:MonetaryGrant
    130 sg:journal.1042464 schema:issn 1998-0000
    131 1998-0124
    132 schema:name Nano Research
    133 rdf:type schema:Periodical
    134 sg:person.011267316207.98 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    135 schema:familyName Mu
    136 schema:givenName Kejun
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267316207.98
    138 rdf:type schema:Person
    139 sg:person.01176070666.37 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    140 schema:familyName Song
    141 schema:givenName Li
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37
    143 rdf:type schema:Person
    144 sg:person.013326252533.33 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    145 schema:familyName Lv
    146 schema:givenName Haifeng
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013326252533.33
    148 rdf:type schema:Person
    149 sg:person.015311136733.28 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    150 schema:familyName Muhammad
    151 schema:givenName Zahir
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311136733.28
    153 rdf:type schema:Person
    154 sg:person.016654743513.59 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    155 schema:familyName ur Rehman
    156 schema:givenName Zia
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654743513.59
    158 rdf:type schema:Person
    159 sg:person.0625647065.69 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    160 schema:familyName Wu
    161 schema:givenName Chuanqiang
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625647065.69
    163 rdf:type schema:Person
    164 sg:person.0712516471.80 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    165 schema:familyName Sun
    166 schema:givenName Zhe
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712516471.80
    168 rdf:type schema:Person
    169 sg:person.0734146202.61 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    170 schema:familyName Wu
    171 schema:givenName Xiaojun
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734146202.61
    173 rdf:type schema:Person
    174 sg:person.07515205401.44 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    175 schema:familyName Habib
    176 schema:givenName Muhammad
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515205401.44
    178 rdf:type schema:Person
    179 sg:pub.10.1007/bf00899572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053205642
    180 https://doi.org/10.1007/bf00899572
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nature25774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101357979
    183 https://doi.org/10.1038/nature25774
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ncomms5673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025332418
    186 https://doi.org/10.1038/ncomms5673
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ncomms9943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048227383
    189 https://doi.org/10.1038/ncomms9943
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmat4061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051148621
    192 https://doi.org/10.1038/nmat4061
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmat4064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050016353
    195 https://doi.org/10.1038/nmat4064
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
    198 https://doi.org/10.1038/nnano.2012.95
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
    201 https://doi.org/10.1038/nnano.2012.96
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nnano.2013.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022386904
    204 https://doi.org/10.1038/nnano.2013.277
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nnano.2014.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049265812
    207 https://doi.org/10.1038/nnano.2014.186
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nnano.2014.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043969832
    210 https://doi.org/10.1038/nnano.2014.214
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nphoton.2014.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006595845
    213 https://doi.org/10.1038/nphoton.2014.271
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nphys3009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043389657
    216 https://doi.org/10.1038/nphys3009
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nphys3105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018879371
    219 https://doi.org/10.1038/nphys3105
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nphys360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044562983
    222 https://doi.org/10.1038/nphys360
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s41565-018-0069-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101201669
    225 https://doi.org/10.1038/s41565-018-0069-3
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1140/epjb/e2012-30070-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021213474
    228 https://doi.org/10.1140/epjb/e2012-30070-x
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/s40580-017-0100-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253059
    231 https://doi.org/10.1186/s40580-017-0100-7
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1002/adfm.201300125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011093575
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1002/aenm.201500744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052769107
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1002/andp.201400128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927966
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/0022-3697(69)90045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032074371
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.elspec.2012.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017676892
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.progsurf.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046725391
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1021/acs.nanolett.5b02635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120904
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1021/acs.nanolett.5b03278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120995
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1021/acs.nanolett.5b03481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040238109
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1021/acs.nanolett.6b04698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083853918
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1021/acs.nanolett.6b04775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079400596
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1021/acs.nanolett.6b04814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401067
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1021/acs.nanolett.7b00509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084124051
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1021/acs.nanolett.7b01548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100618451
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1021/acsnano.5b05556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041402413
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1021/acsnano.6b06144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079391869
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1021/acsnano.7b08350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100270061
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1021/jacs.5b03807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055874062
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1021/nl502557g schema:sameAs https://app.dimensions.ai/details/publication/pub.1039223016
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1021/nn400280c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038090434
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1039/c4cs00182f schema:sameAs https://app.dimensions.ai/details/publication/pub.1047656105
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1039/c6tc00254d schema:sameAs https://app.dimensions.ai/details/publication/pub.1032068675
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1063/1.1723695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011664987
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1063/1.3672219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057996959
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1063/1.94128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058134267
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1088/0957-4484/26/30/304002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008205289
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nsr/nwu078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033118741
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1103/physrevb.84.075335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636502
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1103/physrevb.84.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102128
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1103/physrevb.86.241201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640583
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1103/physrevb.95.144505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084604135
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1103/physrevlett.107.216602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759058
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1103/physrevlett.109.066802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036808302
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1103/physrevlett.111.106801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023656938
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1103/physrevlett.111.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762089
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1103/physrevlett.111.216805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052387138
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1103/physrevlett.114.046802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033070906
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1103/physrevlett.95.226801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026041336
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1103/physrevlett.99.146401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869436
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1126/science.1201607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464420
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1126/science.1235547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030349025
    320 rdf:type schema:CreativeWork
    321 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
    322 schema:name CAS Key Laboratory of Materials for Energy Conservation, Synergetic Innovation Centre of Quantum Information & Quantum Physics, CAS Center for Excellence in Nanoscience, and Department of Material Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
    323 National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 230029, Hefei, China
    324 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...