Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-27

AUTHORS

Yuzhen Zhu, Chao Gao, Song Bai, Shuangming Chen, Ran Long, Li Song, Zhengquan Li, Yujie Xiong

ABSTRACT

Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion. More... »

PAGES

3396-3406

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-017-1552-0

DOI

http://dx.doi.org/10.1007/s12274-017-1552-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085605572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China", 
          "id": "http://www.grid.ac/institutes/grid.453534.0", 
          "name": [
            "Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yuzhen", 
        "id": "sg:person.014135226767.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135226767.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Chao", 
        "id": "sg:person.01277070523.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277070523.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China", 
          "id": "http://www.grid.ac/institutes/grid.453534.0", 
          "name": [
            "Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Song", 
        "id": "sg:person.01066776517.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066776517.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shuangming", 
        "id": "sg:person.011532204051.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532204051.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Ran", 
        "id": "sg:person.0640412546.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Li", 
        "id": "sg:person.01176070666.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China", 
          "id": "http://www.grid.ac/institutes/grid.453534.0", 
          "name": [
            "Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhengquan", 
        "id": "sg:person.015502551533.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502551533.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yujie", 
        "id": "sg:person.0600113217.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/277637a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569831", 
          "https://doi.org/10.1038/277637a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-016-1087-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006123744", 
          "https://doi.org/10.1007/s12274-016-1087-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-27", 
    "datePublishedReg": "2017-05-27", 
    "description": "Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12274-017-1552-0", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8148737", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8154265", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8380680", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "photocatalytic CO2 reduction", 
      "Pd cocatalyst", 
      "photocatalytic reduction", 
      "CO2 reduction", 
      "photocatalytic CO2 conversion", 
      "photocatalytic mechanism study", 
      "CO2 conversion", 
      "metal cocatalysts", 
      "photocatalytic selectivity", 
      "performance enhancement", 
      "H2 production", 
      "CO intermediate", 
      "promising solution", 
      "charge separation", 
      "giant enhancement", 
      "CH4", 
      "H2 evolution", 
      "final product", 
      "cocatalyst", 
      "CO2", 
      "semiconductors", 
      "CH4 production", 
      "mechanism study", 
      "hydridation", 
      "enhancement", 
      "conversion", 
      "materials", 
      "reduction", 
      "energy", 
      "new opportunities", 
      "H2", 
      "CO", 
      "separation", 
      "solution", 
      "Herein", 
      "approach", 
      "production", 
      "experiments", 
      "selectivity", 
      "environmental crisis", 
      "electrons", 
      "results", 
      "products", 
      "evolution", 
      "isotopic labeling experiments", 
      "study", 
      "insights", 
      "dual role", 
      "opportunities", 
      "intermediates", 
      "role", 
      "activity", 
      "crisis", 
      "labeling experiments"
    ], 
    "name": "Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4", 
    "pagination": "3396-3406", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085605572"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-017-1552-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-017-1552-0", 
      "https://app.dimensions.ai/details/publication/pub.1085605572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_725.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12274-017-1552-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-017-1552-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-017-1552-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-017-1552-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-017-1552-0'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      80 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-017-1552-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N37ff267ffcea4681b44d3f2569bd351b
4 schema:citation sg:pub.10.1007/s12274-016-1087-9
5 sg:pub.10.1038/277637a0
6 schema:datePublished 2017-05-27
7 schema:datePublishedReg 2017-05-27
8 schema:description Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N46998e54addc44f79dccf194737f4b4e
12 N50f22872ae8b42e986f0090e049721fc
13 sg:journal.1042464
14 schema:keywords CH4
15 CH4 production
16 CO
17 CO intermediate
18 CO2
19 CO2 conversion
20 CO2 reduction
21 H2
22 H2 evolution
23 H2 production
24 Herein
25 Pd cocatalyst
26 activity
27 approach
28 charge separation
29 cocatalyst
30 conversion
31 crisis
32 dual role
33 electrons
34 energy
35 enhancement
36 environmental crisis
37 evolution
38 experiments
39 final product
40 giant enhancement
41 hydridation
42 insights
43 intermediates
44 isotopic labeling experiments
45 labeling experiments
46 materials
47 mechanism study
48 metal cocatalysts
49 new opportunities
50 opportunities
51 performance enhancement
52 photocatalytic CO2 conversion
53 photocatalytic CO2 reduction
54 photocatalytic mechanism study
55 photocatalytic reduction
56 photocatalytic selectivity
57 production
58 products
59 promising solution
60 reduction
61 results
62 role
63 selectivity
64 semiconductors
65 separation
66 solution
67 study
68 schema:name Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4
69 schema:pagination 3396-3406
70 schema:productId N758a6e20aecb4b5cb602db5d8742957b
71 Nb3042ad25a334e97a3c9ce5f2ea0912c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085605572
73 https://doi.org/10.1007/s12274-017-1552-0
74 schema:sdDatePublished 2022-12-01T06:35
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nc6f36753ce9a40ab9c56ee35126698f8
77 schema:url https://doi.org/10.1007/s12274-017-1552-0
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N37ff267ffcea4681b44d3f2569bd351b rdf:first sg:person.014135226767.58
82 rdf:rest N5ac3ec2bfd7f4f31a3837a775d1877a5
83 N3c1a477b86654644aab389406feca14d rdf:first sg:person.01176070666.37
84 rdf:rest Nc2380bb510b841d2b0880f1723735397
85 N46998e54addc44f79dccf194737f4b4e schema:volumeNumber 10
86 rdf:type schema:PublicationVolume
87 N50f22872ae8b42e986f0090e049721fc schema:issueNumber 10
88 rdf:type schema:PublicationIssue
89 N5ac3ec2bfd7f4f31a3837a775d1877a5 rdf:first sg:person.01277070523.33
90 rdf:rest Nad1425fcceae4ea3bb1be35cd10cbf07
91 N758a6e20aecb4b5cb602db5d8742957b schema:name dimensions_id
92 schema:value pub.1085605572
93 rdf:type schema:PropertyValue
94 Na89ec1e8cbd04ff7abb39b121225097c rdf:first sg:person.0640412546.43
95 rdf:rest N3c1a477b86654644aab389406feca14d
96 Nad1425fcceae4ea3bb1be35cd10cbf07 rdf:first sg:person.01066776517.25
97 rdf:rest Nadf9e57f2d84463c9352ec7cabad73c8
98 Nadf9e57f2d84463c9352ec7cabad73c8 rdf:first sg:person.011532204051.72
99 rdf:rest Na89ec1e8cbd04ff7abb39b121225097c
100 Nb3042ad25a334e97a3c9ce5f2ea0912c schema:name doi
101 schema:value 10.1007/s12274-017-1552-0
102 rdf:type schema:PropertyValue
103 Nc2380bb510b841d2b0880f1723735397 rdf:first sg:person.015502551533.91
104 rdf:rest Ne5028dfedb484533b1061814907deee6
105 Nc6f36753ce9a40ab9c56ee35126698f8 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Ne5028dfedb484533b1061814907deee6 rdf:first sg:person.0600113217.27
108 rdf:rest rdf:nil
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:grant.8148737 http://pending.schema.org/fundedItem sg:pub.10.1007/s12274-017-1552-0
116 rdf:type schema:MonetaryGrant
117 sg:grant.8154265 http://pending.schema.org/fundedItem sg:pub.10.1007/s12274-017-1552-0
118 rdf:type schema:MonetaryGrant
119 sg:grant.8380680 http://pending.schema.org/fundedItem sg:pub.10.1007/s12274-017-1552-0
120 rdf:type schema:MonetaryGrant
121 sg:journal.1042464 schema:issn 1998-0000
122 1998-0124
123 schema:name Nano Research
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01066776517.25 schema:affiliation grid-institutes:grid.453534.0
127 schema:familyName Bai
128 schema:givenName Song
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066776517.25
130 rdf:type schema:Person
131 sg:person.011532204051.72 schema:affiliation grid-institutes:None
132 schema:familyName Chen
133 schema:givenName Shuangming
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532204051.72
135 rdf:type schema:Person
136 sg:person.01176070666.37 schema:affiliation grid-institutes:None
137 schema:familyName Song
138 schema:givenName Li
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37
140 rdf:type schema:Person
141 sg:person.01277070523.33 schema:affiliation grid-institutes:None
142 schema:familyName Gao
143 schema:givenName Chao
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277070523.33
145 rdf:type schema:Person
146 sg:person.014135226767.58 schema:affiliation grid-institutes:grid.453534.0
147 schema:familyName Zhu
148 schema:givenName Yuzhen
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135226767.58
150 rdf:type schema:Person
151 sg:person.015502551533.91 schema:affiliation grid-institutes:grid.453534.0
152 schema:familyName Li
153 schema:givenName Zhengquan
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502551533.91
155 rdf:type schema:Person
156 sg:person.0600113217.27 schema:affiliation grid-institutes:None
157 schema:familyName Xiong
158 schema:givenName Yujie
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
160 rdf:type schema:Person
161 sg:person.0640412546.43 schema:affiliation grid-institutes:None
162 schema:familyName Long
163 schema:givenName Ran
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43
165 rdf:type schema:Person
166 sg:pub.10.1007/s12274-016-1087-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006123744
167 https://doi.org/10.1007/s12274-016-1087-9
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/277637a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569831
170 https://doi.org/10.1038/277637a0
171 rdf:type schema:CreativeWork
172 grid-institutes:None schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
173 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
174 rdf:type schema:Organization
175 grid-institutes:grid.453534.0 schema:alternateName Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China
176 schema:name Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and Chemistry, Zhejiang Normal University, 321004, Jinhua, China
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...