Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-27

AUTHORS

Wei Ye, Chenhao Ren, Daobin Liu, Chengming Wang, Ning Zhang, Wensheng Yan, Li Song, Yujie Xiong

ABSTRACT

Semiconducting 2H-MoS2 with high chemical stability is a promising alternative to the existing electrocatalysts for the hydrogen evolution reaction (HER); however, the HER performance largely suffers from the limited number of active S sites and low mobility for charge transport. In this work, we demonstrate that the limitations of 2H-MoS2 for the HER can be overcome by forming hybrid structures with metallic nanowires. Taking the integration with Pd as a proofof- concept, we show with solid experimental evidence that the one-dimensional structure of metallic nanowires facilitates electron transport to active S sites, while the interfacial charge polarization between MoS2 and Pd increases the electron density of the S sites for improved activity. As a result, the hybrid structure exhibits a current density of 122 mA·cm-2 at -300 mV versus RHE and a Tafel slope of 44 mV·decade-1 with excellent durability, well exceeding the performances of bare 2H-MoS2 and metallic 1T-MoS2. This work provides insights into electrocatalyst design based on charge transport and polarization, which can be extended to other hybrid structures. More... »

PAGES

2662-2671

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-016-1153-3

DOI

http://dx.doi.org/10.1007/s12274-016-1153-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021094058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Wei", 
        "id": "sg:person.014520106051.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520106051.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Chenhao", 
        "id": "sg:person.016174225531.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174225531.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Daobin", 
        "id": "sg:person.01162263343.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162263343.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chengming", 
        "id": "sg:person.01105505613.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105505613.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Ning", 
        "id": "sg:person.011707713025.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707713025.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Wensheng", 
        "id": "sg:person.0700512322.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700512322.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Li", 
        "id": "sg:person.01176070666.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yujie", 
        "id": "sg:person.0600113217.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2014.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034933436", 
          "https://doi.org/10.1038/nnano.2014.64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00202472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021758922", 
          "https://doi.org/10.1007/bf00202472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-014-0606-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020548074", 
          "https://doi.org/10.1007/s12274-014-0606-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003006397", 
          "https://doi.org/10.1038/ncomms6982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-015-0862-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143815", 
          "https://doi.org/10.1007/s12274-015-0862-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013204716", 
          "https://doi.org/10.1038/ncomms2472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043173310", 
          "https://doi.org/10.1038/nmat1752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029342303", 
          "https://doi.org/10.1038/srep13801"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-27", 
    "datePublishedReg": "2016-06-27", 
    "description": "Semiconducting 2H-MoS2 with high chemical stability is a promising alternative to the existing electrocatalysts for the hydrogen evolution reaction (HER); however, the HER performance largely suffers from the limited number of active S sites and low mobility for charge transport. In this work, we demonstrate that the limitations of 2H-MoS2 for the HER can be overcome by forming hybrid structures with metallic nanowires. Taking the integration with Pd as a proofof- concept, we show with solid experimental evidence that the one-dimensional structure of metallic nanowires facilitates electron transport to active S sites, while the interfacial charge polarization between MoS2 and Pd increases the electron density of the S sites for improved activity. As a result, the hybrid structure exhibits a current density of 122 mA\u00b7cm-2 at -300 mV versus RHE and a Tafel slope of 44 mV\u00b7decade-1 with excellent durability, well exceeding the performances of bare 2H-MoS2 and metallic 1T-MoS2. This work provides insights into electrocatalyst design based on charge transport and polarization, which can be extended to other hybrid structures.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12274-016-1153-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "hydrogen evolution reaction", 
      "hybrid structure", 
      "metallic nanowires", 
      "active S sites", 
      "evolution reaction", 
      "interfacial charge polarization", 
      "charge transport", 
      "electrocatalytic hydrogen evolution reaction", 
      "metallic 1T-MoS2", 
      "charge polarization", 
      "high chemical stability", 
      "excellent durability", 
      "current density", 
      "HER performance", 
      "Tafel slope", 
      "electrocatalyst design", 
      "chemical stability", 
      "nanowires", 
      "one-dimensional structure", 
      "promising alternative", 
      "S sites", 
      "low mobility", 
      "transport", 
      "performance", 
      "durability", 
      "polarization", 
      "density", 
      "electrocatalysts", 
      "electron transport", 
      "structure", 
      "MoS2", 
      "RHE", 
      "work", 
      "stability", 
      "improved activity", 
      "design", 
      "electron density", 
      "solid experimental evidence", 
      "mV", 
      "Pd", 
      "slope", 
      "experimental evidence", 
      "mobility", 
      "integration", 
      "reaction", 
      "alternative", 
      "results", 
      "limited number", 
      "limitations", 
      "sites", 
      "number", 
      "insights", 
      "activity", 
      "evidence"
    ], 
    "name": "Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction", 
    "pagination": "2662-2671", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021094058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-016-1153-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-016-1153-3", 
      "https://app.dimensions.ai/details/publication/pub.1021094058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_714.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12274-016-1153-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-016-1153-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-016-1153-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-016-1153-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-016-1153-3'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      86 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-016-1153-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne353c76bc749430fb4b1da7d0537ed8e
4 schema:citation sg:pub.10.1007/bf00202472
5 sg:pub.10.1007/s12274-014-0606-9
6 sg:pub.10.1007/s12274-015-0862-3
7 sg:pub.10.1038/ncomms2472
8 sg:pub.10.1038/ncomms6982
9 sg:pub.10.1038/nmat1752
10 sg:pub.10.1038/nnano.2014.64
11 sg:pub.10.1038/srep13801
12 schema:datePublished 2016-06-27
13 schema:datePublishedReg 2016-06-27
14 schema:description Semiconducting 2H-MoS2 with high chemical stability is a promising alternative to the existing electrocatalysts for the hydrogen evolution reaction (HER); however, the HER performance largely suffers from the limited number of active S sites and low mobility for charge transport. In this work, we demonstrate that the limitations of 2H-MoS2 for the HER can be overcome by forming hybrid structures with metallic nanowires. Taking the integration with Pd as a proofof- concept, we show with solid experimental evidence that the one-dimensional structure of metallic nanowires facilitates electron transport to active S sites, while the interfacial charge polarization between MoS2 and Pd increases the electron density of the S sites for improved activity. As a result, the hybrid structure exhibits a current density of 122 mA·cm-2 at -300 mV versus RHE and a Tafel slope of 44 mV·decade-1 with excellent durability, well exceeding the performances of bare 2H-MoS2 and metallic 1T-MoS2. This work provides insights into electrocatalyst design based on charge transport and polarization, which can be extended to other hybrid structures.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N9d81fb73630149cbabfb2bf39a0c31f0
18 Nf9eaded1dfdf4e3b89cd67f33c5c6030
19 sg:journal.1042464
20 schema:keywords HER performance
21 MoS2
22 Pd
23 RHE
24 S sites
25 Tafel slope
26 active S sites
27 activity
28 alternative
29 charge polarization
30 charge transport
31 chemical stability
32 current density
33 density
34 design
35 durability
36 electrocatalyst design
37 electrocatalysts
38 electrocatalytic hydrogen evolution reaction
39 electron density
40 electron transport
41 evidence
42 evolution reaction
43 excellent durability
44 experimental evidence
45 high chemical stability
46 hybrid structure
47 hydrogen evolution reaction
48 improved activity
49 insights
50 integration
51 interfacial charge polarization
52 limitations
53 limited number
54 low mobility
55 mV
56 metallic 1T-MoS2
57 metallic nanowires
58 mobility
59 nanowires
60 number
61 one-dimensional structure
62 performance
63 polarization
64 promising alternative
65 reaction
66 results
67 sites
68 slope
69 solid experimental evidence
70 stability
71 structure
72 transport
73 work
74 schema:name Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction
75 schema:pagination 2662-2671
76 schema:productId N33165a6a3a484f349940cdb3db6deff4
77 Ne1793e065edf456887f33d567e3ff100
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021094058
79 https://doi.org/10.1007/s12274-016-1153-3
80 schema:sdDatePublished 2022-12-01T06:35
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nd11dbc5bdb294186a00d39ae7ec7d68f
83 schema:url https://doi.org/10.1007/s12274-016-1153-3
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N008ea585ea744f1c901d0de31771c0c4 rdf:first sg:person.01176070666.37
88 rdf:rest N5bd9dbec610e46929b7f34a6c7a1952f
89 N2cd5debebd4e4abc91a25440e7131ad2 rdf:first sg:person.01162263343.56
90 rdf:rest Nc7f3084c1eda411daa66a7bacedbe102
91 N33165a6a3a484f349940cdb3db6deff4 schema:name dimensions_id
92 schema:value pub.1021094058
93 rdf:type schema:PropertyValue
94 N46fc4f5195bf44779db5e8b4bbbb6d73 rdf:first sg:person.0700512322.44
95 rdf:rest N008ea585ea744f1c901d0de31771c0c4
96 N4f5ff862aaff404db2deaa28e9572937 rdf:first sg:person.016174225531.06
97 rdf:rest N2cd5debebd4e4abc91a25440e7131ad2
98 N5bd9dbec610e46929b7f34a6c7a1952f rdf:first sg:person.0600113217.27
99 rdf:rest rdf:nil
100 N9d81fb73630149cbabfb2bf39a0c31f0 schema:issueNumber 9
101 rdf:type schema:PublicationIssue
102 Nc7f3084c1eda411daa66a7bacedbe102 rdf:first sg:person.01105505613.54
103 rdf:rest Ncf9f883da7914ad5b5450a36a8184a99
104 Ncf9f883da7914ad5b5450a36a8184a99 rdf:first sg:person.011707713025.38
105 rdf:rest N46fc4f5195bf44779db5e8b4bbbb6d73
106 Nd11dbc5bdb294186a00d39ae7ec7d68f schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Ne1793e065edf456887f33d567e3ff100 schema:name doi
109 schema:value 10.1007/s12274-016-1153-3
110 rdf:type schema:PropertyValue
111 Ne353c76bc749430fb4b1da7d0537ed8e rdf:first sg:person.014520106051.04
112 rdf:rest N4f5ff862aaff404db2deaa28e9572937
113 Nf9eaded1dfdf4e3b89cd67f33c5c6030 schema:volumeNumber 9
114 rdf:type schema:PublicationVolume
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
119 schema:name Materials Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1042464 schema:issn 1998-0000
122 1998-0124
123 schema:name Nano Research
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01105505613.54 schema:affiliation grid-institutes:None
127 schema:familyName Wang
128 schema:givenName Chengming
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105505613.54
130 rdf:type schema:Person
131 sg:person.01162263343.56 schema:affiliation grid-institutes:None
132 schema:familyName Liu
133 schema:givenName Daobin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162263343.56
135 rdf:type schema:Person
136 sg:person.011707713025.38 schema:affiliation grid-institutes:None
137 schema:familyName Zhang
138 schema:givenName Ning
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707713025.38
140 rdf:type schema:Person
141 sg:person.01176070666.37 schema:affiliation grid-institutes:None
142 schema:familyName Song
143 schema:givenName Li
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37
145 rdf:type schema:Person
146 sg:person.014520106051.04 schema:affiliation grid-institutes:None
147 schema:familyName Ye
148 schema:givenName Wei
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014520106051.04
150 rdf:type schema:Person
151 sg:person.016174225531.06 schema:affiliation grid-institutes:None
152 schema:familyName Ren
153 schema:givenName Chenhao
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174225531.06
155 rdf:type schema:Person
156 sg:person.0600113217.27 schema:affiliation grid-institutes:None
157 schema:familyName Xiong
158 schema:givenName Yujie
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
160 rdf:type schema:Person
161 sg:person.0700512322.44 schema:affiliation grid-institutes:None
162 schema:familyName Yan
163 schema:givenName Wensheng
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700512322.44
165 rdf:type schema:Person
166 sg:pub.10.1007/bf00202472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021758922
167 https://doi.org/10.1007/bf00202472
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s12274-014-0606-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020548074
170 https://doi.org/10.1007/s12274-014-0606-9
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s12274-015-0862-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143815
173 https://doi.org/10.1007/s12274-015-0862-3
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013204716
176 https://doi.org/10.1038/ncomms2472
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms6982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003006397
179 https://doi.org/10.1038/ncomms6982
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nmat1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043173310
182 https://doi.org/10.1038/nmat1752
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nnano.2014.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034933436
185 https://doi.org/10.1038/nnano.2014.64
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/srep13801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029342303
188 https://doi.org/10.1038/srep13801
189 rdf:type schema:CreativeWork
190 grid-institutes:None schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
191 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...