Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02-03

AUTHORS

Majid Khan, Ammar Bin Yousaf, Mingming Chen, Chengsha Wei, Xibo Wu, Ningdong Huang, Zemin Qi, Liangbin Li

ABSTRACT

We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nanotubes (CNTs) prepared by a two-step process. Firstly, reduced GO–CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via π–π interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO–CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of ~38 mV·decade−1, and an apparent exchange current density of 74.25 mA·cm−2. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network. More... »

PAGES

837-848

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-015-0963-z

DOI

http://dx.doi.org/10.1007/s12274-015-0963-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043345497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and IT, Sarhad University of Science and Information Technology, 25000, Peshawar, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.444996.2", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
            "Department of Computer Science and IT, Sarhad University of Science and Information Technology, 25000, Peshawar, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Majid", 
        "id": "sg:person.012045614703.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012045614703.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yousaf", 
        "givenName": "Ammar Bin", 
        "id": "sg:person.011356134255.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356134255.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingming", 
        "id": "sg:person.0677340433.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677340433.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Chengsha", 
        "id": "sg:person.010374515515.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010374515515.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Xibo", 
        "id": "sg:person.01157620462.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157620462.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Ningdong", 
        "id": "sg:person.01247634642.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247634642.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Zemin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Liangbin", 
        "id": "sg:person.010410777701.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410777701.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep02527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030560422", 
          "https://doi.org/10.1038/srep02527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006186815", 
          "https://doi.org/10.1038/35104599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025924482", 
          "https://doi.org/10.1038/ncomms1067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007406485", 
          "https://doi.org/10.1038/srep06256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017237473", 
          "https://doi.org/10.1038/nchem.907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826767", 
          "https://doi.org/10.1038/ncomms4783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-03", 
    "datePublishedReg": "2016-02-03", 
    "description": "We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nanotubes (CNTs) prepared by a two-step process. Firstly, reduced GO\u2013CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via \u03c0\u2013\u03c0 interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO\u2013CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of ~38 mV\u00b7decade\u22121, and an apparent exchange current density of 74.25 mA\u00b7cm\u22122. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12274-015-0963-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "graphene oxide", 
      "ternary hybrid composite", 
      "excellent electrical coupling", 
      "carbon nanotubes", 
      "hydrogen evolution reaction", 
      "hybrid composites", 
      "composite structures", 
      "ternary composites", 
      "superior hydrogen evolution activity", 
      "CNT networks", 
      "nanocomposite materials", 
      "composites", 
      "MoS2 nanoparticles", 
      "evolution reaction", 
      "current density", 
      "two-step process", 
      "molybdenum disulfide", 
      "superior electrocatalytic activity", 
      "exchange current density", 
      "low onset potential", 
      "underlying graphene", 
      "apparent exchange current density", 
      "aqueous dispersions", 
      "hydrothermal treatment", 
      "Tafel slope", 
      "onset potential", 
      "hydrogen evolution activity", 
      "electrocatalytic applications", 
      "electrocatalytic activity", 
      "synergistic effect", 
      "MoS2", 
      "graphene", 
      "evolution activity", 
      "oxide", 
      "materials", 
      "surface", 
      "nanotubes", 
      "dispersion", 
      "nanoparticles", 
      "stability", 
      "density", 
      "applications", 
      "process", 
      "structure", 
      "slope", 
      "coupling", 
      "electrical coupling", 
      "potential", 
      "effect", 
      "reaction", 
      "network", 
      "disulfide", 
      "interaction", 
      "treatment", 
      "activity", 
      "three-dimensional hierarchical ternary hybrid composite", 
      "hierarchical ternary hybrid composite", 
      "GO\u2013CNT composites", 
      "three-dimensional microstructuresare", 
      "microstructuresare", 
      "Molybdenum sulfide/graphene-carbon nanotube nanocomposite material", 
      "sulfide/graphene-carbon nanotube nanocomposite material", 
      "graphene-carbon nanotube nanocomposite material", 
      "nanotube nanocomposite material"
    ], 
    "name": "Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions", 
    "pagination": "837-848", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043345497"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-015-0963-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-015-0963-z", 
      "https://app.dimensions.ai/details/publication/pub.1043345497"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_687.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12274-015-0963-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-015-0963-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-015-0963-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-015-0963-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-015-0963-z'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      22 PREDICATES      97 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-015-0963-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N2bf7fcd1835148998f2c0eaa189910ca
6 schema:citation sg:pub.10.1038/35104599
7 sg:pub.10.1038/nchem.907
8 sg:pub.10.1038/ncomms1067
9 sg:pub.10.1038/ncomms4783
10 sg:pub.10.1038/srep02527
11 sg:pub.10.1038/srep06256
12 schema:datePublished 2016-02-03
13 schema:datePublishedReg 2016-02-03
14 schema:description We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nanotubes (CNTs) prepared by a two-step process. Firstly, reduced GO–CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via π–π interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO–CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of ~38 mV·decade−1, and an apparent exchange current density of 74.25 mA·cm−2. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N7218dec2707541d19cbede3931320c1c
19 N86dacf77359f4b448a376dcde5981a67
20 sg:journal.1042464
21 schema:keywords CNT networks
22 GO–CNT composites
23 MoS2
24 MoS2 nanoparticles
25 Molybdenum sulfide/graphene-carbon nanotube nanocomposite material
26 Tafel slope
27 activity
28 apparent exchange current density
29 applications
30 aqueous dispersions
31 carbon nanotubes
32 composite structures
33 composites
34 coupling
35 current density
36 density
37 dispersion
38 disulfide
39 effect
40 electrical coupling
41 electrocatalytic activity
42 electrocatalytic applications
43 evolution activity
44 evolution reaction
45 excellent electrical coupling
46 exchange current density
47 graphene
48 graphene oxide
49 graphene-carbon nanotube nanocomposite material
50 hierarchical ternary hybrid composite
51 hybrid composites
52 hydrogen evolution activity
53 hydrogen evolution reaction
54 hydrothermal treatment
55 interaction
56 low onset potential
57 materials
58 microstructuresare
59 molybdenum disulfide
60 nanocomposite materials
61 nanoparticles
62 nanotube nanocomposite material
63 nanotubes
64 network
65 onset potential
66 oxide
67 potential
68 process
69 reaction
70 slope
71 stability
72 structure
73 sulfide/graphene-carbon nanotube nanocomposite material
74 superior electrocatalytic activity
75 superior hydrogen evolution activity
76 surface
77 synergistic effect
78 ternary composites
79 ternary hybrid composite
80 three-dimensional hierarchical ternary hybrid composite
81 three-dimensional microstructuresare
82 treatment
83 two-step process
84 underlying graphene
85 schema:name Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions
86 schema:pagination 837-848
87 schema:productId N621536fc724e4613bae2303a51886e66
88 N870b2baffaca44358af61a8c05135e83
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043345497
90 https://doi.org/10.1007/s12274-015-0963-z
91 schema:sdDatePublished 2021-11-01T18:26
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nca507780d8a647bdacf94e567d5ab010
94 schema:url https://doi.org/10.1007/s12274-015-0963-z
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N0518acb48e204d2b970d9b9905fcb94c rdf:first N6b53d7bb53b749eca8895ec32856f5c8
99 rdf:rest Nbd92684c629b41eda3fec3676c03c66c
100 N10b139d6b85f43f08003ccc8fb185f1f rdf:first sg:person.01247634642.34
101 rdf:rest N0518acb48e204d2b970d9b9905fcb94c
102 N2bf7fcd1835148998f2c0eaa189910ca rdf:first sg:person.012045614703.45
103 rdf:rest Ne477e405a9004d219fdfa15a9e45776c
104 N621536fc724e4613bae2303a51886e66 schema:name dimensions_id
105 schema:value pub.1043345497
106 rdf:type schema:PropertyValue
107 N6b53d7bb53b749eca8895ec32856f5c8 schema:affiliation grid-institutes:grid.59053.3a
108 schema:familyName Qi
109 schema:givenName Zemin
110 rdf:type schema:Person
111 N7218dec2707541d19cbede3931320c1c schema:issueNumber 3
112 rdf:type schema:PublicationIssue
113 N7b7d867e4de44350bab3392116653c87 rdf:first sg:person.010374515515.03
114 rdf:rest N84adfc2ec92249d88b86da83d12c4093
115 N84adfc2ec92249d88b86da83d12c4093 rdf:first sg:person.01157620462.54
116 rdf:rest N10b139d6b85f43f08003ccc8fb185f1f
117 N86dacf77359f4b448a376dcde5981a67 schema:volumeNumber 9
118 rdf:type schema:PublicationVolume
119 N870b2baffaca44358af61a8c05135e83 schema:name doi
120 schema:value 10.1007/s12274-015-0963-z
121 rdf:type schema:PropertyValue
122 Nbd92684c629b41eda3fec3676c03c66c rdf:first sg:person.010410777701.42
123 rdf:rest rdf:nil
124 Nca507780d8a647bdacf94e567d5ab010 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Ncb1ba09fe66c43a89da7da0157171a68 rdf:first sg:person.0677340433.26
127 rdf:rest N7b7d867e4de44350bab3392116653c87
128 Ne477e405a9004d219fdfa15a9e45776c rdf:first sg:person.011356134255.29
129 rdf:rest Ncb1ba09fe66c43a89da7da0157171a68
130 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
131 schema:name Chemical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Chemistry (incl. Structural)
135 rdf:type schema:DefinedTerm
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
140 schema:name Materials Engineering
141 rdf:type schema:DefinedTerm
142 sg:journal.1042464 schema:issn 1998-0000
143 1998-0124
144 schema:name Nano Research
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.010374515515.03 schema:affiliation grid-institutes:grid.59053.3a
148 schema:familyName Wei
149 schema:givenName Chengsha
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010374515515.03
151 rdf:type schema:Person
152 sg:person.010410777701.42 schema:affiliation grid-institutes:grid.59053.3a
153 schema:familyName Li
154 schema:givenName Liangbin
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410777701.42
156 rdf:type schema:Person
157 sg:person.011356134255.29 schema:affiliation grid-institutes:grid.59053.3a
158 schema:familyName Yousaf
159 schema:givenName Ammar Bin
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356134255.29
161 rdf:type schema:Person
162 sg:person.01157620462.54 schema:affiliation grid-institutes:grid.59053.3a
163 schema:familyName Wu
164 schema:givenName Xibo
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157620462.54
166 rdf:type schema:Person
167 sg:person.012045614703.45 schema:affiliation grid-institutes:grid.444996.2
168 schema:familyName Khan
169 schema:givenName Majid
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012045614703.45
171 rdf:type schema:Person
172 sg:person.01247634642.34 schema:affiliation grid-institutes:grid.59053.3a
173 schema:familyName Huang
174 schema:givenName Ningdong
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247634642.34
176 rdf:type schema:Person
177 sg:person.0677340433.26 schema:affiliation grid-institutes:grid.59053.3a
178 schema:familyName Chen
179 schema:givenName Mingming
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677340433.26
181 rdf:type schema:Person
182 sg:pub.10.1038/35104599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186815
183 https://doi.org/10.1038/35104599
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nchem.907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017237473
186 https://doi.org/10.1038/nchem.907
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ncomms1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025924482
189 https://doi.org/10.1038/ncomms1067
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ncomms4783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826767
192 https://doi.org/10.1038/ncomms4783
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/srep02527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030560422
195 https://doi.org/10.1038/srep02527
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/srep06256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406485
198 https://doi.org/10.1038/srep06256
199 rdf:type schema:CreativeWork
200 grid-institutes:grid.444996.2 schema:alternateName Department of Computer Science and IT, Sarhad University of Science and Information Technology, 25000, Peshawar, Pakistan
201 schema:name Department of Computer Science and IT, Sarhad University of Science and Information Technology, 25000, Peshawar, Pakistan
202 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China
203 rdf:type schema:Organization
204 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
205 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China
206 schema:name Hefei National Laboratory for Physical Sciences at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
207 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 230029, Hefei, China
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...