Realization of low contact resistance close to theoretical limit in graphene transistors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Hua Zhong, Zhiyong Zhang, Bingyan Chen, Haitao Xu, Dangming Yu, Le Huang, Lianmao Peng

ABSTRACT

Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77–300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path. More... »

PAGES

1669-1679

References to SciGraph publications

Journal

TITLE

Nano Research

ISSUE

5

VOLUME

8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-014-0656-z

DOI

http://dx.doi.org/10.1007/s12274-014-0656-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047632062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Hua", 
        "id": "sg:person.0600355736.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600355736.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhiyong", 
        "id": "sg:person.01266511511.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266511511.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Bingyan", 
        "id": "sg:person.01044504046.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044504046.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Haitao", 
        "id": "sg:person.0724205120.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724205120.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Dangming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Le", 
        "id": "sg:person.01271317746.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271317746.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Lianmao", 
        "id": "sg:person.010515521607.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn400671z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017728638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3290248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022419153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3549183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023411515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024564800", 
          "https://doi.org/10.1038/nature11458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.121402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.121402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034103583", 
          "https://doi.org/10.1038/nnano.2011.6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4705367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037413694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037553678", 
          "https://doi.org/10.1038/nnano.2008.58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303587r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038856603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.033407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041070784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.033407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041070784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.49.051304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046317312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3077021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4804643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050339255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2998396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057891857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3582613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3646506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057991231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3691629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058001879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4768690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4769817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2011.2178611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061712821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2009.5424297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095774096"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 \u03a9\u00b7\u03bcm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 \u03a9\u00b7\u03bcm, with a minimum value of 69 \u03a9\u00b7\u03bcm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77\u2013300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-014-0656-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Realization of low contact resistance close to theoretical limit in graphene transistors", 
    "pagination": "1669-1679", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2e808ce666a81b0909d067e08b07fda6f98f202b16c940317ce1198bdbfdde1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-014-0656-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047632062"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-014-0656-z", 
      "https://app.dimensions.ai/details/publication/pub.1047632062"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12274-014-0656-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0656-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0656-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0656-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0656-z'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-014-0656-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5c4cb2096fbd41eaa12d2202222420a5
4 schema:citation sg:pub.10.1038/nature11458
5 sg:pub.10.1038/nnano.2008.58
6 sg:pub.10.1038/nnano.2011.6
7 https://doi.org/10.1021/nl303587r
8 https://doi.org/10.1021/nn400671z
9 https://doi.org/10.1063/1.2998396
10 https://doi.org/10.1063/1.3077021
11 https://doi.org/10.1063/1.3290248
12 https://doi.org/10.1063/1.3549183
13 https://doi.org/10.1063/1.3582613
14 https://doi.org/10.1063/1.3646506
15 https://doi.org/10.1063/1.3691629
16 https://doi.org/10.1063/1.4705367
17 https://doi.org/10.1063/1.4768690
18 https://doi.org/10.1063/1.4769817
19 https://doi.org/10.1063/1.4804643
20 https://doi.org/10.1103/physrevb.78.121402
21 https://doi.org/10.1103/physrevb.84.033407
22 https://doi.org/10.1109/iedm.2009.5424297
23 https://doi.org/10.1109/tnano.2011.2178611
24 https://doi.org/10.1126/science.1244358
25 https://doi.org/10.1143/jjap.49.051304
26 schema:datePublished 2015-05
27 schema:datePublishedReg 2015-05-01
28 schema:description Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77–300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N2d223bb5b5864f8895ed038a0a96114e
33 Ndb9d99cbb2df42cb8d5545eb69601929
34 sg:journal.1042464
35 schema:name Realization of low contact resistance close to theoretical limit in graphene transistors
36 schema:pagination 1669-1679
37 schema:productId N3c329a2d695846a1a5278a3018d98706
38 N4e27876f77f4490aa7efa7365459fac0
39 Nf06adb5ad7ba488bba57d989cc449857
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047632062
41 https://doi.org/10.1007/s12274-014-0656-z
42 schema:sdDatePublished 2019-04-11T02:11
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N73a4395b1c7d4f13a51de2407f370ec8
45 schema:url http://link.springer.com/10.1007%2Fs12274-014-0656-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N19b7fc773e254e72ab21b846552c723e rdf:first sg:person.010515521607.58
50 rdf:rest rdf:nil
51 N1eb371b2b9d4497e85fd6c14809163bc rdf:first sg:person.01266511511.29
52 rdf:rest N99fdd08f4f9a4e7e88cdb2fbe8464f74
53 N201e1bca539f404d8e679e9415c017a6 rdf:first sg:person.0724205120.31
54 rdf:rest Nd775655fb04b4ad2846969aa7c168759
55 N2d223bb5b5864f8895ed038a0a96114e schema:volumeNumber 8
56 rdf:type schema:PublicationVolume
57 N3c329a2d695846a1a5278a3018d98706 schema:name doi
58 schema:value 10.1007/s12274-014-0656-z
59 rdf:type schema:PropertyValue
60 N4badf063119c4dc098f69695035fdf7e rdf:first sg:person.01271317746.29
61 rdf:rest N19b7fc773e254e72ab21b846552c723e
62 N4e27876f77f4490aa7efa7365459fac0 schema:name dimensions_id
63 schema:value pub.1047632062
64 rdf:type schema:PropertyValue
65 N5c4cb2096fbd41eaa12d2202222420a5 rdf:first sg:person.0600355736.58
66 rdf:rest N1eb371b2b9d4497e85fd6c14809163bc
67 N5d7d2b46387d461fa51592ba800c4de2 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
68 schema:familyName Yu
69 schema:givenName Dangming
70 rdf:type schema:Person
71 N73a4395b1c7d4f13a51de2407f370ec8 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N99fdd08f4f9a4e7e88cdb2fbe8464f74 rdf:first sg:person.01044504046.84
74 rdf:rest N201e1bca539f404d8e679e9415c017a6
75 Nd775655fb04b4ad2846969aa7c168759 rdf:first N5d7d2b46387d461fa51592ba800c4de2
76 rdf:rest N4badf063119c4dc098f69695035fdf7e
77 Ndb9d99cbb2df42cb8d5545eb69601929 schema:issueNumber 5
78 rdf:type schema:PublicationIssue
79 Nf06adb5ad7ba488bba57d989cc449857 schema:name readcube_id
80 schema:value e2e808ce666a81b0909d067e08b07fda6f98f202b16c940317ce1198bdbfdde1
81 rdf:type schema:PropertyValue
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1042464 schema:issn 1998-0000
89 1998-0124
90 schema:name Nano Research
91 rdf:type schema:Periodical
92 sg:person.01044504046.84 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
93 schema:familyName Chen
94 schema:givenName Bingyan
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044504046.84
96 rdf:type schema:Person
97 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
98 schema:familyName Peng
99 schema:givenName Lianmao
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
101 rdf:type schema:Person
102 sg:person.01266511511.29 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
103 schema:familyName Zhang
104 schema:givenName Zhiyong
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266511511.29
106 rdf:type schema:Person
107 sg:person.01271317746.29 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
108 schema:familyName Huang
109 schema:givenName Le
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271317746.29
111 rdf:type schema:Person
112 sg:person.0600355736.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
113 schema:familyName Zhong
114 schema:givenName Hua
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600355736.58
116 rdf:type schema:Person
117 sg:person.0724205120.31 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
118 schema:familyName Xu
119 schema:givenName Haitao
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724205120.31
121 rdf:type schema:Person
122 sg:pub.10.1038/nature11458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024564800
123 https://doi.org/10.1038/nature11458
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nnano.2008.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037553678
126 https://doi.org/10.1038/nnano.2008.58
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nnano.2011.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103583
129 https://doi.org/10.1038/nnano.2011.6
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/nl303587r schema:sameAs https://app.dimensions.ai/details/publication/pub.1038856603
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/nn400671z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017728638
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.2998396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057891857
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.3077021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583175
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.3290248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022419153
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.3549183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023411515
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.3582613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979055
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.3646506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057991231
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.3691629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058001879
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.4705367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037413694
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.4768690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064157
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.4769817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064655
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.4804643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050339255
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.78.121402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030738081
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.84.033407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041070784
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iedm.2009.5424297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095774096
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tnano.2011.2178611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061712821
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1143/jjap.49.051304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046317312
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
170 schema:name Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, Beijing, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...