Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Yan Wang, Tingting Yang, Junchao Lao, Rujing Zhang, Yangyang Zhang, Miao Zhu, Xiao Li, Xiaobei Zang, Kunlin Wang, Wenjian Yu, Hu Jin, Li Wang, Hongwei Zhu

ABSTRACT

A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one’s speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data. More... »

PAGES

1627-1636

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-014-0652-3

DOI

http://dx.doi.org/10.1007/s12274-014-0652-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042905573


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Physics and Institute for Advanced Study, Nanchang University, 330031, Nanchang, China", 
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yan", 
        "id": "sg:person.01022570210.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022570210.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China", 
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Tingting", 
        "id": "sg:person.01106010257.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106010257.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Physics and Institute for Advanced Study, Nanchang University, 330031, Nanchang, China", 
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lao", 
        "givenName": "Junchao", 
        "id": "sg:person.012555007426.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555007426.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Rujing", 
        "id": "sg:person.01122512363.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122512363.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yangyang", 
        "id": "sg:person.015620666727.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015620666727.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China", 
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Miao", 
        "id": "sg:person.01037047270.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037047270.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China", 
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiao", 
        "id": "sg:person.01154123457.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154123457.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zang", 
        "givenName": "Xiaobei", 
        "id": "sg:person.0636601002.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636601002.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kunlin", 
        "id": "sg:person.01145455106.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145455106.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wenjian", 
        "id": "sg:person.015040437614.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015040437614.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "2D Carbon Graphene Material Co., Ltd., 213149, Changzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Hu", 
        "id": "sg:person.01367473610.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367473610.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanchang University", 
          "id": "https://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Physics and Institute for Advanced Study, Nanchang University, 330031, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Li", 
        "id": "sg:person.011353157521.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353157521.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China", 
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Hongwei", 
        "id": "sg:person.01313174733.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313174733.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.201304248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001727974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001905841", 
          "https://doi.org/10.1038/nnano.2011.36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006542776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201400379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007440162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008343987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008343987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2006.04.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012856653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802367t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018075668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802367t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018075668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201103406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019288302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201203154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020017971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201302240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020567806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201401207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021306675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024105305", 
          "https://doi.org/10.1038/35074532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024105305", 
          "https://doi.org/10.1038/35074532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201200150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036674201", 
          "https://doi.org/10.1038/srep00870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.157601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039010447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.157601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039010447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(03)00063-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040288825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(03)00063-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040288825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040617014", 
          "https://doi.org/10.1038/nnano.2014.38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200700757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042266037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043083559", 
          "https://doi.org/10.1038/ncomms4132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn402728g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043435923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043647356", 
          "https://doi.org/10.1038/srep00395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201301796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045540235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar2001233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055150082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.36.506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.36.506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5234.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/0022215042244660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064533694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/30141323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070169569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/30141323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070169569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one\u2019s speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-014-0652-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition", 
    "pagination": "1627-1636", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc601f181c552d5ab395b1d1a4bb03f6156bcfc48eae02ac1ab30e1534d36201"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-014-0652-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042905573"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-014-0652-3", 
      "https://app.dimensions.ai/details/publication/pub.1042905573"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12274-014-0652-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0652-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0652-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0652-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0652-3'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-014-0652-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N732c576206f14f33a31d90f1deedfeb0
4 schema:citation sg:pub.10.1038/35074532
5 sg:pub.10.1038/ncomms4132
6 sg:pub.10.1038/nnano.2011.36
7 sg:pub.10.1038/nnano.2014.38
8 sg:pub.10.1038/srep00395
9 sg:pub.10.1038/srep00870
10 https://doi.org/10.1002/adfm.200700757
11 https://doi.org/10.1002/adfm.201400379
12 https://doi.org/10.1002/adma.201103406
13 https://doi.org/10.1002/adma.201200150
14 https://doi.org/10.1002/adma.201301796
15 https://doi.org/10.1002/adma.201302240
16 https://doi.org/10.1002/adma.201304248
17 https://doi.org/10.1002/smll.201203154
18 https://doi.org/10.1002/smll.201401207
19 https://doi.org/10.1016/j.cmpb.2012.07.003
20 https://doi.org/10.1016/j.polymer.2006.04.063
21 https://doi.org/10.1016/s0304-3991(03)00063-9
22 https://doi.org/10.1021/ar2001233
23 https://doi.org/10.1021/nl802367t
24 https://doi.org/10.1021/nn402728g
25 https://doi.org/10.1103/physrev.36.506
26 https://doi.org/10.1103/physrevlett.90.157601
27 https://doi.org/10.1109/5.18626
28 https://doi.org/10.1126/science.1171245
29 https://doi.org/10.1126/science.1206157
30 https://doi.org/10.1126/science.1250169
31 https://doi.org/10.1126/science.270.5234.303
32 https://doi.org/10.1258/0022215042244660
33 https://doi.org/10.2307/30141323
34 schema:datePublished 2015-05
35 schema:datePublishedReg 2015-05-01
36 schema:description A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one’s speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N4ca67bf065ec4520958356bebc1b91de
41 Nd291d84807e147978fd4901e1423c148
42 sg:journal.1042464
43 schema:name Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition
44 schema:pagination 1627-1636
45 schema:productId N0316a9ae1cbe425fbb4134de7ce296e4
46 N09fa925aca5c4bc1b46743a3a0e94be8
47 N9db467e05e38441ba12234854bd78310
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042905573
49 https://doi.org/10.1007/s12274-014-0652-3
50 schema:sdDatePublished 2019-04-10T15:54
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N11d3fb7bd9924ee280dfb7ea98bd6a24
53 schema:url http://link.springer.com/10.1007%2Fs12274-014-0652-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0316a9ae1cbe425fbb4134de7ce296e4 schema:name readcube_id
58 schema:value cc601f181c552d5ab395b1d1a4bb03f6156bcfc48eae02ac1ab30e1534d36201
59 rdf:type schema:PropertyValue
60 N09fa925aca5c4bc1b46743a3a0e94be8 schema:name doi
61 schema:value 10.1007/s12274-014-0652-3
62 rdf:type schema:PropertyValue
63 N11d3fb7bd9924ee280dfb7ea98bd6a24 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N13a1d442266944988fe82a5721f52d59 schema:name 2D Carbon Graphene Material Co., Ltd., 213149, Changzhou, China
66 rdf:type schema:Organization
67 N16265d7d8d294546bb45e345f1de6ee4 rdf:first sg:person.01106010257.37
68 rdf:rest N36e9ac3e088347938e56d85acf83bea5
69 N359ca58f63c2444ba7c5acda73388530 rdf:first sg:person.01037047270.07
70 rdf:rest Na3544d6f259641aea4907e813fd1934e
71 N36e9ac3e088347938e56d85acf83bea5 rdf:first sg:person.012555007426.43
72 rdf:rest Nefb88d16a85b4aa29b44fd44ca6b1c5a
73 N4847e1913eed4876bbd763909ad1f028 rdf:first sg:person.01145455106.29
74 rdf:rest Nac27969b349b4c43b3dc8843cd1dfcf6
75 N4ca67bf065ec4520958356bebc1b91de schema:issueNumber 5
76 rdf:type schema:PublicationIssue
77 N564f0553dc03492ebb3295cc08a3602e rdf:first sg:person.0636601002.24
78 rdf:rest N4847e1913eed4876bbd763909ad1f028
79 N6018066e62254ee49ec487f23c5266f1 rdf:first sg:person.015620666727.73
80 rdf:rest N359ca58f63c2444ba7c5acda73388530
81 N732c576206f14f33a31d90f1deedfeb0 rdf:first sg:person.01022570210.31
82 rdf:rest N16265d7d8d294546bb45e345f1de6ee4
83 N9c809e9818d0425cbb0b21d0bb90f44d rdf:first sg:person.01313174733.09
84 rdf:rest rdf:nil
85 N9db467e05e38441ba12234854bd78310 schema:name dimensions_id
86 schema:value pub.1042905573
87 rdf:type schema:PropertyValue
88 Na3544d6f259641aea4907e813fd1934e rdf:first sg:person.01154123457.83
89 rdf:rest N564f0553dc03492ebb3295cc08a3602e
90 Nac27969b349b4c43b3dc8843cd1dfcf6 rdf:first sg:person.015040437614.23
91 rdf:rest Nbe0db5cc3b1a4a66b43fa65b3017f990
92 Nbe0db5cc3b1a4a66b43fa65b3017f990 rdf:first sg:person.01367473610.75
93 rdf:rest Ne2bed716c6fa46ab9bdbaa355586da87
94 Nd291d84807e147978fd4901e1423c148 schema:volumeNumber 8
95 rdf:type schema:PublicationVolume
96 Ne2bed716c6fa46ab9bdbaa355586da87 rdf:first sg:person.011353157521.64
97 rdf:rest N9c809e9818d0425cbb0b21d0bb90f44d
98 Nefb88d16a85b4aa29b44fd44ca6b1c5a rdf:first sg:person.01122512363.51
99 rdf:rest N6018066e62254ee49ec487f23c5266f1
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:journal.1042464 schema:issn 1998-0000
107 1998-0124
108 schema:name Nano Research
109 rdf:type schema:Periodical
110 sg:person.01022570210.31 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
111 schema:familyName Wang
112 schema:givenName Yan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022570210.31
114 rdf:type schema:Person
115 sg:person.01037047270.07 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
116 schema:familyName Zhu
117 schema:givenName Miao
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037047270.07
119 rdf:type schema:Person
120 sg:person.01106010257.37 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
121 schema:familyName Yang
122 schema:givenName Tingting
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106010257.37
124 rdf:type schema:Person
125 sg:person.01122512363.51 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
126 schema:familyName Zhang
127 schema:givenName Rujing
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122512363.51
129 rdf:type schema:Person
130 sg:person.011353157521.64 schema:affiliation https://www.grid.ac/institutes/grid.260463.5
131 schema:familyName Wang
132 schema:givenName Li
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353157521.64
134 rdf:type schema:Person
135 sg:person.01145455106.29 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
136 schema:familyName Wang
137 schema:givenName Kunlin
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145455106.29
139 rdf:type schema:Person
140 sg:person.01154123457.83 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
141 schema:familyName Li
142 schema:givenName Xiao
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154123457.83
144 rdf:type schema:Person
145 sg:person.012555007426.43 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
146 schema:familyName Lao
147 schema:givenName Junchao
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555007426.43
149 rdf:type schema:Person
150 sg:person.01313174733.09 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
151 schema:familyName Zhu
152 schema:givenName Hongwei
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313174733.09
154 rdf:type schema:Person
155 sg:person.01367473610.75 schema:affiliation N13a1d442266944988fe82a5721f52d59
156 schema:familyName Jin
157 schema:givenName Hu
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367473610.75
159 rdf:type schema:Person
160 sg:person.015040437614.23 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
161 schema:familyName Yu
162 schema:givenName Wenjian
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015040437614.23
164 rdf:type schema:Person
165 sg:person.015620666727.73 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
166 schema:familyName Zhang
167 schema:givenName Yangyang
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015620666727.73
169 rdf:type schema:Person
170 sg:person.0636601002.24 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
171 schema:familyName Zang
172 schema:givenName Xiaobei
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636601002.24
174 rdf:type schema:Person
175 sg:pub.10.1038/35074532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024105305
176 https://doi.org/10.1038/35074532
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms4132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043083559
179 https://doi.org/10.1038/ncomms4132
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nnano.2011.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001905841
182 https://doi.org/10.1038/nnano.2011.36
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nnano.2014.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040617014
185 https://doi.org/10.1038/nnano.2014.38
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/srep00395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043647356
188 https://doi.org/10.1038/srep00395
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/srep00870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036674201
191 https://doi.org/10.1038/srep00870
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/adfm.200700757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042266037
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/adfm.201400379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007440162
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/adma.201103406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019288302
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/adma.201200150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417296
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/adma.201301796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045540235
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/adma.201302240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020567806
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/adma.201304248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001727974
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1002/smll.201203154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020017971
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/smll.201401207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021306675
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.cmpb.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050395463
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.polymer.2006.04.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012856653
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0304-3991(03)00063-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040288825
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ar2001233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055150082
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/nl802367t schema:sameAs https://app.dimensions.ai/details/publication/pub.1018075668
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/nn402728g schema:sameAs https://app.dimensions.ai/details/publication/pub.1043435923
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrev.36.506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060445946
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.90.157601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039010447
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.1171245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821145
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1206157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006542776
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1250169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008343987
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.270.5234.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551446
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1258/0022215042244660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064533694
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2307/30141323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070169569
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
242 schema:name Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China
243 Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
244 Department of Physics and Institute for Advanced Study, Nanchang University, 330031, Nanchang, China
245 School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.260463.5 schema:alternateName Nanchang University
248 schema:name Department of Physics and Institute for Advanced Study, Nanchang University, 330031, Nanchang, China
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...