Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11-06

AUTHORS

Song Bai, Limin Wang, Xiaoyi Chen, Junteng Du, Yujie Xiong

ABSTRACT

Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of noble metal co-catalysts, seeking noble metal-free co-catalysts will always be the goal when designing cost-effective, high-performance hybrid photocatalysts. In this work, we demonstrate that MoS2 nanosheets with 1T phase (i.e., octahedral phase) can function as a co-catalyst with multiple merits: (1) Noble-metal-free; (2) high mobility for charge transport; (3) high density of active sites for H2 evolution on basal planes; (4) good performance stability; (5) high light transparency. As demonstrated in both photocatalytic hydrogen production and Rhodamine B degradation, the developed hybrid structure with TiO2 exhibits excellent performance, in sharp contrast to bare TiO2 and the hybrid counterpart with 2H-MoS2. More... »

PAGES

175-183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-014-0606-9

DOI

http://dx.doi.org/10.1007/s12274-014-0606-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020548074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Song", 
        "id": "sg:person.01066776517.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066776517.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Limin", 
        "id": "sg:person.01314032041.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314032041.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiaoyi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Junteng", 
        "id": "sg:person.014413363265.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014413363265.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yujie", 
        "id": "sg:person.0600113217.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-010-0033-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012157646", 
          "https://doi.org/10.1007/s12274-010-0033-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034933436", 
          "https://doi.org/10.1038/nnano.2014.64"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11-06", 
    "datePublishedReg": "2014-11-06", 
    "description": "Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of noble metal co-catalysts, seeking noble metal-free co-catalysts will always be the goal when designing cost-effective, high-performance hybrid photocatalysts. In this work, we demonstrate that MoS2 nanosheets with 1T phase (i.e., octahedral phase) can function as a co-catalyst with multiple merits: (1) Noble-metal-free; (2) high mobility for charge transport; (3) high density of active sites for H2 evolution on basal planes; (4) good performance stability; (5) high light transparency. As demonstrated in both photocatalytic hydrogen production and Rhodamine B degradation, the developed hybrid structure with TiO2 exhibits excellent performance, in sharp contrast to bare TiO2 and the hybrid counterpart with 2H-MoS2.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12274-014-0606-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "MoS2 nanosheets", 
      "high-performance hybrid photocatalysts", 
      "photocatalytic hydrogen production", 
      "electron-hole separation", 
      "Rhodamine B degradation", 
      "Metallic MoS2 Nanosheets", 
      "high light transparency", 
      "efficient photocatalysis", 
      "TiO2 nanocrystals", 
      "hybrid photocatalysts", 
      "photocatalytic performance", 
      "multiple merits", 
      "good performance stability", 
      "bare TiO2", 
      "hybrid structure", 
      "H2 evolution", 
      "hydrogen production", 
      "light transparency", 
      "B degradation", 
      "noble metals", 
      "hybrid counterparts", 
      "high mobility", 
      "nanosheets", 
      "tremendous efforts", 
      "excellent performance", 
      "charge transport", 
      "performance stability", 
      "TiO2", 
      "active site", 
      "T phase", 
      "basal plane", 
      "nanocrystals", 
      "high density", 
      "photocatalysis", 
      "photocatalyst", 
      "performance", 
      "critical step", 
      "merits", 
      "mobility", 
      "transparency", 
      "degradation", 
      "stability", 
      "metals", 
      "density", 
      "separation", 
      "transport", 
      "phase", 
      "structure", 
      "plane", 
      "production", 
      "work", 
      "counterparts", 
      "sharp contrast", 
      "step", 
      "strategies", 
      "evolution", 
      "use", 
      "efforts", 
      "function", 
      "sites", 
      "goal", 
      "contrast"
    ], 
    "name": "Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals", 
    "pagination": "175-183", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020548074"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-014-0606-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-014-0606-9", 
      "https://app.dimensions.ai/details/publication/pub.1020548074"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_619.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12274-014-0606-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0606-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0606-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0606-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0606-9'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      90 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-014-0606-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N87d0c32b416e49f6b565e78acb3f0a89
6 schema:citation sg:pub.10.1007/s12274-010-0033-5
7 sg:pub.10.1038/nnano.2014.64
8 schema:datePublished 2014-11-06
9 schema:datePublishedReg 2014-11-06
10 schema:description Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of noble metal co-catalysts, seeking noble metal-free co-catalysts will always be the goal when designing cost-effective, high-performance hybrid photocatalysts. In this work, we demonstrate that MoS2 nanosheets with 1T phase (i.e., octahedral phase) can function as a co-catalyst with multiple merits: (1) Noble-metal-free; (2) high mobility for charge transport; (3) high density of active sites for H2 evolution on basal planes; (4) good performance stability; (5) high light transparency. As demonstrated in both photocatalytic hydrogen production and Rhodamine B degradation, the developed hybrid structure with TiO2 exhibits excellent performance, in sharp contrast to bare TiO2 and the hybrid counterpart with 2H-MoS2.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N8975455d1aa14e00bb9df646bf25e8e7
14 Nae879d566d6f476398d2a58d0c59f8e3
15 sg:journal.1042464
16 schema:keywords B degradation
17 H2 evolution
18 Metallic MoS2 Nanosheets
19 MoS2 nanosheets
20 Rhodamine B degradation
21 T phase
22 TiO2
23 TiO2 nanocrystals
24 active site
25 bare TiO2
26 basal plane
27 charge transport
28 contrast
29 counterparts
30 critical step
31 degradation
32 density
33 efficient photocatalysis
34 efforts
35 electron-hole separation
36 evolution
37 excellent performance
38 function
39 goal
40 good performance stability
41 high density
42 high light transparency
43 high mobility
44 high-performance hybrid photocatalysts
45 hybrid counterparts
46 hybrid photocatalysts
47 hybrid structure
48 hydrogen production
49 light transparency
50 merits
51 metals
52 mobility
53 multiple merits
54 nanocrystals
55 nanosheets
56 noble metals
57 performance
58 performance stability
59 phase
60 photocatalysis
61 photocatalyst
62 photocatalytic hydrogen production
63 photocatalytic performance
64 plane
65 production
66 separation
67 sharp contrast
68 sites
69 stability
70 step
71 strategies
72 structure
73 transparency
74 transport
75 tremendous efforts
76 use
77 work
78 schema:name Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals
79 schema:pagination 175-183
80 schema:productId N036db216848c4e4b86571d8388ec4711
81 N40be860c420943e684ffaa8216a7a3d6
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020548074
83 https://doi.org/10.1007/s12274-014-0606-9
84 schema:sdDatePublished 2022-12-01T06:31
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nf83970d3333f48bc85caa50c701e9d08
87 schema:url https://doi.org/10.1007/s12274-014-0606-9
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N036db216848c4e4b86571d8388ec4711 schema:name dimensions_id
92 schema:value pub.1020548074
93 rdf:type schema:PropertyValue
94 N40be860c420943e684ffaa8216a7a3d6 schema:name doi
95 schema:value 10.1007/s12274-014-0606-9
96 rdf:type schema:PropertyValue
97 N48fff0ea295d48d6a9ee51ee182fb212 schema:affiliation grid-institutes:grid.59053.3a
98 schema:familyName Chen
99 schema:givenName Xiaoyi
100 rdf:type schema:Person
101 N715a1a6597794ce1bc33bc4c37501075 rdf:first sg:person.014413363265.27
102 rdf:rest N836bfbdfa3e34768b82779c914f86be7
103 N836bfbdfa3e34768b82779c914f86be7 rdf:first sg:person.0600113217.27
104 rdf:rest rdf:nil
105 N87d0c32b416e49f6b565e78acb3f0a89 rdf:first sg:person.01066776517.25
106 rdf:rest N995b5e9372aa43408148201d12c37c66
107 N8975455d1aa14e00bb9df646bf25e8e7 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N995b5e9372aa43408148201d12c37c66 rdf:first sg:person.01314032041.39
110 rdf:rest Nc60e693466874442a288810baf3da218
111 Nae879d566d6f476398d2a58d0c59f8e3 schema:volumeNumber 8
112 rdf:type schema:PublicationVolume
113 Nc60e693466874442a288810baf3da218 rdf:first N48fff0ea295d48d6a9ee51ee182fb212
114 rdf:rest N715a1a6597794ce1bc33bc4c37501075
115 Nf83970d3333f48bc85caa50c701e9d08 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
118 schema:name Chemical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Chemistry (incl. Structural)
122 rdf:type schema:DefinedTerm
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1042464 schema:issn 1998-0000
130 1998-0124
131 schema:name Nano Research
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01066776517.25 schema:affiliation grid-institutes:grid.59053.3a
135 schema:familyName Bai
136 schema:givenName Song
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066776517.25
138 rdf:type schema:Person
139 sg:person.01314032041.39 schema:affiliation grid-institutes:grid.59053.3a
140 schema:familyName Wang
141 schema:givenName Limin
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314032041.39
143 rdf:type schema:Person
144 sg:person.014413363265.27 schema:affiliation grid-institutes:grid.59053.3a
145 schema:familyName Du
146 schema:givenName Junteng
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014413363265.27
148 rdf:type schema:Person
149 sg:person.0600113217.27 schema:affiliation grid-institutes:grid.59053.3a
150 schema:familyName Xiong
151 schema:givenName Yujie
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
153 rdf:type schema:Person
154 sg:pub.10.1007/s12274-010-0033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012157646
155 https://doi.org/10.1007/s12274-010-0033-5
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nnano.2014.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034933436
158 https://doi.org/10.1038/nnano.2014.64
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
161 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, and School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...