Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

Rui He, Sukrit Sucharitakul, Zhipeng Ye, Courtney Keiser, Tim E. Kidd, Xuan P. A. Gao

ABSTRACT

Bi-Te nanoplates (NPs) grown by a low pressure vapor transport method have been studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones and display characteristic changes with the increase of Bi concentration. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry. More... »

PAGES

851-859

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-014-0567-z

DOI

http://dx.doi.org/10.1007/s12274-014-0567-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052638710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Northern Iowa", 
          "id": "https://www.grid.ac/institutes/grid.266878.5", 
          "name": [
            "Department of Physics, University of Northern Iowa, 50614, Cedar Falls, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Rui", 
        "id": "sg:person.01177522031.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177522031.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Physics, Case Western Reserve University, 44106, Cleveland, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sucharitakul", 
        "givenName": "Sukrit", 
        "id": "sg:person.01012430765.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012430765.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Northern Iowa", 
          "id": "https://www.grid.ac/institutes/grid.266878.5", 
          "name": [
            "Department of Physics, University of Northern Iowa, 50614, Cedar Falls, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Zhipeng", 
        "id": "sg:person.01007272574.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007272574.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Northern Iowa", 
          "id": "https://www.grid.ac/institutes/grid.266878.5", 
          "name": [
            "Department of Physics, University of Northern Iowa, 50614, Cedar Falls, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keiser", 
        "givenName": "Courtney", 
        "id": "sg:person.01362063631.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362063631.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Northern Iowa", 
          "id": "https://www.grid.ac/institutes/grid.266878.5", 
          "name": [
            "Department of Physics, University of Northern Iowa, 50614, Cedar Falls, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Tim E.", 
        "id": "sg:person.010414542723.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414542723.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Physics, Case Western Reserve University, 44106, Cleveland, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Xuan P. A.", 
        "id": "sg:person.014070532024.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070532024.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nn304684b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002963494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006914984", 
          "https://doi.org/10.1038/nnano.2011.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1173034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009232583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1173034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009232583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3396190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011810716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101260j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012136415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101260j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012136415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/181834a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974002", 
          "https://doi.org/10.1038/181834a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.165311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.165311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/23/45/455703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033304614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.1874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035435719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898094", 
          "https://doi.org/10.1038/nphys1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2221250114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040033942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903590b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041019689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903590b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041019689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200773n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044142446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200773n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044142446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047390349", 
          "https://doi.org/10.1038/nature08234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047390349", 
          "https://doi.org/10.1038/nature08234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567740879002788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052379473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp3030039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056088988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn2024607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3120865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057913358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/30/10/106801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059059927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.155306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.155306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ict.2006.331236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093524203"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "Bi-Te nanoplates (NPs) grown by a low pressure vapor transport method have been studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones and display characteristic changes with the increase of Bi concentration. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-014-0567-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates", 
    "pagination": "851-859", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fabc0d165c0b79d9a93cf1ef0d369a97e931ed3f54bf5d83d5ad95d540636869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-014-0567-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052638710"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-014-0567-z", 
      "https://app.dimensions.ai/details/publication/pub.1052638710"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12274-014-0567-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0567-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0567-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0567-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0567-z'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-014-0567-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N510263631ecd46c6a61611c8ff4e785a
4 schema:citation sg:pub.10.1038/181834a0
5 sg:pub.10.1038/nature08234
6 sg:pub.10.1038/nnano.2011.172
7 sg:pub.10.1038/nphys1270
8 https://doi.org/10.1002/jrs.1874
9 https://doi.org/10.1002/pssb.2221250114
10 https://doi.org/10.1021/jp3030039
11 https://doi.org/10.1021/nl101260j
12 https://doi.org/10.1021/nl200773n
13 https://doi.org/10.1021/nl903590b
14 https://doi.org/10.1021/nn2024607
15 https://doi.org/10.1021/nn304684b
16 https://doi.org/10.1063/1.3120865
17 https://doi.org/10.1063/1.3396190
18 https://doi.org/10.1088/0256-307x/30/10/106801
19 https://doi.org/10.1088/0957-4484/23/45/455703
20 https://doi.org/10.1103/physrevb.5.4087
21 https://doi.org/10.1103/physrevb.63.155306
22 https://doi.org/10.1103/physrevb.84.165311
23 https://doi.org/10.1103/revmodphys.82.3045
24 https://doi.org/10.1107/s0567740879002788
25 https://doi.org/10.1109/ict.2006.331236
26 https://doi.org/10.1126/science.1173034
27 https://doi.org/10.1126/science.1189792
28 schema:datePublished 2015-03
29 schema:datePublishedReg 2015-03-01
30 schema:description Bi-Te nanoplates (NPs) grown by a low pressure vapor transport method have been studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones and display characteristic changes with the increase of Bi concentration. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N2418da6b05764a4da8aedf63c276c584
35 Nd1856f6a83834cb683a9380c18da7705
36 sg:journal.1042464
37 schema:name Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates
38 schema:pagination 851-859
39 schema:productId N1c96e449709c427c8cc2c7e9129898a6
40 N3b9efe68c7ff4a40b67f91e86ddbe75f
41 N3fca7c1aa3ae42a18bf3ee1e24a887a8
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052638710
43 https://doi.org/10.1007/s12274-014-0567-z
44 schema:sdDatePublished 2019-04-10T20:00
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N531c7738889a4375ab378be505257204
47 schema:url http://link.springer.com/10.1007%2Fs12274-014-0567-z
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1c96e449709c427c8cc2c7e9129898a6 schema:name dimensions_id
52 schema:value pub.1052638710
53 rdf:type schema:PropertyValue
54 N2418da6b05764a4da8aedf63c276c584 schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 N3b9efe68c7ff4a40b67f91e86ddbe75f schema:name readcube_id
57 schema:value fabc0d165c0b79d9a93cf1ef0d369a97e931ed3f54bf5d83d5ad95d540636869
58 rdf:type schema:PropertyValue
59 N3fca7c1aa3ae42a18bf3ee1e24a887a8 schema:name doi
60 schema:value 10.1007/s12274-014-0567-z
61 rdf:type schema:PropertyValue
62 N510263631ecd46c6a61611c8ff4e785a rdf:first sg:person.01177522031.24
63 rdf:rest N99e96c84a8c3486884197a6efe843dc8
64 N531c7738889a4375ab378be505257204 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N54523dbcd70842019b5395fea70e87a3 rdf:first sg:person.010414542723.62
67 rdf:rest N8a11c7c3138d4078a28679a89325fee4
68 N81658ef9d7954db782b7d7d3d8cc8fbe rdf:first sg:person.01362063631.06
69 rdf:rest N54523dbcd70842019b5395fea70e87a3
70 N8a11c7c3138d4078a28679a89325fee4 rdf:first sg:person.014070532024.28
71 rdf:rest rdf:nil
72 N99e96c84a8c3486884197a6efe843dc8 rdf:first sg:person.01012430765.24
73 rdf:rest Nc4ce55059f5e434e8781c89b8b109562
74 Nc4ce55059f5e434e8781c89b8b109562 rdf:first sg:person.01007272574.12
75 rdf:rest N81658ef9d7954db782b7d7d3d8cc8fbe
76 Nd1856f6a83834cb683a9380c18da7705 schema:volumeNumber 8
77 rdf:type schema:PublicationVolume
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:journal.1042464 schema:issn 1998-0000
85 1998-0124
86 schema:name Nano Research
87 rdf:type schema:Periodical
88 sg:person.01007272574.12 schema:affiliation https://www.grid.ac/institutes/grid.266878.5
89 schema:familyName Ye
90 schema:givenName Zhipeng
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007272574.12
92 rdf:type schema:Person
93 sg:person.01012430765.24 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
94 schema:familyName Sucharitakul
95 schema:givenName Sukrit
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012430765.24
97 rdf:type schema:Person
98 sg:person.010414542723.62 schema:affiliation https://www.grid.ac/institutes/grid.266878.5
99 schema:familyName Kidd
100 schema:givenName Tim E.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414542723.62
102 rdf:type schema:Person
103 sg:person.01177522031.24 schema:affiliation https://www.grid.ac/institutes/grid.266878.5
104 schema:familyName He
105 schema:givenName Rui
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177522031.24
107 rdf:type schema:Person
108 sg:person.01362063631.06 schema:affiliation https://www.grid.ac/institutes/grid.266878.5
109 schema:familyName Keiser
110 schema:givenName Courtney
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362063631.06
112 rdf:type schema:Person
113 sg:person.014070532024.28 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
114 schema:familyName Gao
115 schema:givenName Xuan P. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070532024.28
117 rdf:type schema:Person
118 sg:pub.10.1038/181834a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974002
119 https://doi.org/10.1038/181834a0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature08234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047390349
122 https://doi.org/10.1038/nature08234
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nnano.2011.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006914984
125 https://doi.org/10.1038/nnano.2011.172
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphys1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898094
128 https://doi.org/10.1038/nphys1270
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/jrs.1874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035435719
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/pssb.2221250114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040033942
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/jp3030039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056088988
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nl101260j schema:sameAs https://app.dimensions.ai/details/publication/pub.1012136415
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nl200773n schema:sameAs https://app.dimensions.ai/details/publication/pub.1044142446
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/nl903590b schema:sameAs https://app.dimensions.ai/details/publication/pub.1041019689
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/nn2024607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223662
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/nn304684b schema:sameAs https://app.dimensions.ai/details/publication/pub.1002963494
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.3120865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057913358
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.3396190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011810716
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/0256-307x/30/10/106801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059059927
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/0957-4484/23/45/455703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033304614
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.5.4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572131
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.63.155306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599373
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.84.165311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032739013
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1107/s0567740879002788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052379473
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/ict.2006.331236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093524203
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.1173034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009232583
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1189792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461807
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.266878.5 schema:alternateName University of Northern Iowa
171 schema:name Department of Physics, University of Northern Iowa, 50614, Cedar Falls, Iowa, USA
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
174 schema:name Department of Physics, Case Western Reserve University, 44106, Cleveland, Ohio, USA
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...