Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08-21

AUTHORS

Rongyue Wang, Jianguo Liu, Pan Liu, Xuanxuan Bi, Xiuling Yan, Wenxin Wang, Yifei Meng, Xingbo Ge, Mingwei Chen, Yi Ding

ABSTRACT

Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm−2, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices. More... »

PAGES

1569-1580

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-014-0517-9

DOI

http://dx.doi.org/10.1007/s12274-014-0517-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026053521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Rongyue", 
        "id": "sg:person.01114312011.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114312011.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eco-Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Eco-Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jianguo", 
        "id": "sg:person.011715642321.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715642321.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Pan", 
        "id": "sg:person.0700644400.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xuanxuan", 
        "id": "sg:person.013716574531.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716574531.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Resources and Ecologic Research Institute, School of Chemistry and Bioscience, Yili Normal University, 835000, Yining, China", 
          "id": "http://www.grid.ac/institutes/grid.440770.0", 
          "name": [
            "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China", 
            "Resources and Ecologic Research Institute, School of Chemistry and Bioscience, Yili Normal University, 835000, Yining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xiuling", 
        "id": "sg:person.012636104307.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636104307.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wenxin", 
        "id": "sg:person.014765251661.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765251661.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eco-Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Eco-Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Yifei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Xingbo", 
        "id": "sg:person.0647117234.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647117234.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yi", 
        "id": "sg:person.0777447511.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-011-0141-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004575664", 
          "https://doi.org/10.1007/s12274-011-0141-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-012-0198-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015108666", 
          "https://doi.org/10.1007/s12274-012-0198-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-011-0140-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053513233", 
          "https://doi.org/10.1007/s12274-011-0140-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-013-0332-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042097970", 
          "https://doi.org/10.1007/s12274-013-0332-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021573346", 
          "https://doi.org/10.1038/35104620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017001367", 
          "https://doi.org/10.1038/nchem.553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-014-0407-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043750437", 
          "https://doi.org/10.1007/s12274-014-0407-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-009-9007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021482219", 
          "https://doi.org/10.1007/s12274-009-9007-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08-21", 
    "datePublishedReg": "2014-08-21", 
    "description": "Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 \u03bcg\u00b7cm\u22122, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12274-014-0517-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "direct formic acid fuel cells", 
      "formic acid fuel cells", 
      "acid fuel cells", 
      "core/shell nanostructures", 
      "formic acid electro-oxidation", 
      "fuel cells", 
      "ultra-thin catalyst layer", 
      "nanoporous gold leaf", 
      "high electrode activity", 
      "active reaction sites", 
      "precious metal loading", 
      "ultra-thin layers", 
      "precious metal usage", 
      "shell nanostructures", 
      "low-temperature conversion", 
      "NPG-Pt", 
      "electro-oxidation", 
      "electrode activity", 
      "electrode materials", 
      "superior durability", 
      "Pt usage", 
      "metal loading", 
      "future sustainable society", 
      "catalyst layer", 
      "atomic layers", 
      "reaction sites", 
      "assembly technology", 
      "Bi thin films", 
      "formic acid", 
      "active site", 
      "chemical energy", 
      "metal usage", 
      "great potential", 
      "common impurities", 
      "thin films", 
      "temperature conversion", 
      "power performance", 
      "actual devices", 
      "gold leaf", 
      "anode", 
      "high utilization", 
      "layer", 
      "nanostructures", 
      "actual application", 
      "easy accessibility", 
      "remarkable resistance", 
      "catalyst", 
      "new type", 
      "applications", 
      "platinum", 
      "reactants", 
      "Pt", 
      "devices", 
      "films", 
      "electricity", 
      "vital role", 
      "sustainable society", 
      "durability", 
      "Bi", 
      "loading", 
      "technology", 
      "conversion", 
      "impurities", 
      "electrons", 
      "acid", 
      "thickness", 
      "usage", 
      "materials", 
      "dramatic decrease", 
      "performance", 
      "sites", 
      "utilization", 
      "energy", 
      "cells", 
      "potential", 
      "resistance", 
      "activity", 
      "test", 
      "accessibility", 
      "decrease", 
      "types", 
      "leaves", 
      "role", 
      "society"
    ], 
    "name": "Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells", 
    "pagination": "1569-1580", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026053521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-014-0517-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-014-0517-9", 
      "https://app.dimensions.ai/details/publication/pub.1026053521"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_618.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12274-014-0517-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0517-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0517-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0517-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0517-9'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      118 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-014-0517-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Na91d89d10c134076a59729f0b8c50bed
6 schema:citation sg:pub.10.1007/s12274-009-9007-x
7 sg:pub.10.1007/s12274-011-0140-y
8 sg:pub.10.1007/s12274-011-0141-x
9 sg:pub.10.1007/s12274-012-0198-1
10 sg:pub.10.1007/s12274-013-0332-8
11 sg:pub.10.1007/s12274-014-0407-1
12 sg:pub.10.1038/35104620
13 sg:pub.10.1038/nchem.553
14 schema:datePublished 2014-08-21
15 schema:datePublishedReg 2014-08-21
16 schema:description Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm−2, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N3e4ce97db3d7494f8ecd535ad2b6910d
20 Ne4bef8ab0c96469cb7100765af02a0a0
21 sg:journal.1042464
22 schema:keywords Bi
23 Bi thin films
24 NPG-Pt
25 Pt
26 Pt usage
27 accessibility
28 acid
29 acid fuel cells
30 active reaction sites
31 active site
32 activity
33 actual application
34 actual devices
35 anode
36 applications
37 assembly technology
38 atomic layers
39 catalyst
40 catalyst layer
41 cells
42 chemical energy
43 common impurities
44 conversion
45 core/shell nanostructures
46 decrease
47 devices
48 direct formic acid fuel cells
49 dramatic decrease
50 durability
51 easy accessibility
52 electricity
53 electro-oxidation
54 electrode activity
55 electrode materials
56 electrons
57 energy
58 films
59 formic acid
60 formic acid electro-oxidation
61 formic acid fuel cells
62 fuel cells
63 future sustainable society
64 gold leaf
65 great potential
66 high electrode activity
67 high utilization
68 impurities
69 layer
70 leaves
71 loading
72 low-temperature conversion
73 materials
74 metal loading
75 metal usage
76 nanoporous gold leaf
77 nanostructures
78 new type
79 performance
80 platinum
81 potential
82 power performance
83 precious metal loading
84 precious metal usage
85 reactants
86 reaction sites
87 remarkable resistance
88 resistance
89 role
90 shell nanostructures
91 sites
92 society
93 superior durability
94 sustainable society
95 technology
96 temperature conversion
97 test
98 thickness
99 thin films
100 types
101 ultra-thin catalyst layer
102 ultra-thin layers
103 usage
104 utilization
105 vital role
106 schema:name Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells
107 schema:pagination 1569-1580
108 schema:productId N1c9645a690ef411ca301a50f958ae7e1
109 N763ad14c5416460196cb7808712a4a76
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026053521
111 https://doi.org/10.1007/s12274-014-0517-9
112 schema:sdDatePublished 2022-10-01T06:39
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N5a8ac9f4fe634ff394488dc7368596e4
115 schema:url https://doi.org/10.1007/s12274-014-0517-9
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N0414a5ecd71e4ba7b58615d013b5cbf2 rdf:first sg:person.0777447511.55
120 rdf:rest rdf:nil
121 N1c9645a690ef411ca301a50f958ae7e1 schema:name dimensions_id
122 schema:value pub.1026053521
123 rdf:type schema:PropertyValue
124 N2356a285286643cc91aabe038e5479a7 schema:affiliation grid-institutes:grid.41156.37
125 schema:familyName Meng
126 schema:givenName Yifei
127 rdf:type schema:Person
128 N2ea6c92c7d7d44dd81ac6641798eb60e rdf:first sg:person.012636104307.32
129 rdf:rest N316a9dc7cdc84ff3898828117ca6c26e
130 N316a9dc7cdc84ff3898828117ca6c26e rdf:first sg:person.014765251661.72
131 rdf:rest Nd2cc7cc8d4d847979146b30890d275ea
132 N3e4ce97db3d7494f8ecd535ad2b6910d schema:volumeNumber 7
133 rdf:type schema:PublicationVolume
134 N5a8ac9f4fe634ff394488dc7368596e4 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N658717c0a8374ac3b877184a14f7494e rdf:first sg:person.0700644400.67
137 rdf:rest Na2e970785981426ca190790ee0712dba
138 N763ad14c5416460196cb7808712a4a76 schema:name doi
139 schema:value 10.1007/s12274-014-0517-9
140 rdf:type schema:PropertyValue
141 N9354b3dab0624f9f99373f000864d603 rdf:first sg:person.011715642321.26
142 rdf:rest N658717c0a8374ac3b877184a14f7494e
143 N938a4009b17c4c49ae70948c8e05b7eb rdf:first sg:person.01111213505.34
144 rdf:rest N0414a5ecd71e4ba7b58615d013b5cbf2
145 Na2e970785981426ca190790ee0712dba rdf:first sg:person.013716574531.61
146 rdf:rest N2ea6c92c7d7d44dd81ac6641798eb60e
147 Na91d89d10c134076a59729f0b8c50bed rdf:first sg:person.01114312011.16
148 rdf:rest N9354b3dab0624f9f99373f000864d603
149 Nd2cc7cc8d4d847979146b30890d275ea rdf:first N2356a285286643cc91aabe038e5479a7
150 rdf:rest Ne3112f8d6a904af8b8e7291b83b3e6ec
151 Ne3112f8d6a904af8b8e7291b83b3e6ec rdf:first sg:person.0647117234.68
152 rdf:rest N938a4009b17c4c49ae70948c8e05b7eb
153 Ne4bef8ab0c96469cb7100765af02a0a0 schema:issueNumber 11
154 rdf:type schema:PublicationIssue
155 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
156 schema:name Chemical Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
159 schema:name Physical Chemistry (incl. Structural)
160 rdf:type schema:DefinedTerm
161 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
162 schema:name Engineering
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
165 schema:name Materials Engineering
166 rdf:type schema:DefinedTerm
167 sg:journal.1042464 schema:issn 1998-0000
168 1998-0124
169 schema:name Nano Research
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.69566.3a
173 schema:familyName Chen
174 schema:givenName Mingwei
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
176 rdf:type schema:Person
177 sg:person.01114312011.16 schema:affiliation grid-institutes:grid.27255.37
178 schema:familyName Wang
179 schema:givenName Rongyue
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114312011.16
181 rdf:type schema:Person
182 sg:person.011715642321.26 schema:affiliation grid-institutes:grid.41156.37
183 schema:familyName Liu
184 schema:givenName Jianguo
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715642321.26
186 rdf:type schema:Person
187 sg:person.012636104307.32 schema:affiliation grid-institutes:grid.440770.0
188 schema:familyName Yan
189 schema:givenName Xiuling
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636104307.32
191 rdf:type schema:Person
192 sg:person.013716574531.61 schema:affiliation grid-institutes:grid.27255.37
193 schema:familyName Bi
194 schema:givenName Xuanxuan
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716574531.61
196 rdf:type schema:Person
197 sg:person.014765251661.72 schema:affiliation grid-institutes:grid.27255.37
198 schema:familyName Wang
199 schema:givenName Wenxin
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765251661.72
201 rdf:type schema:Person
202 sg:person.0647117234.68 schema:affiliation grid-institutes:grid.27255.37
203 schema:familyName Ge
204 schema:givenName Xingbo
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647117234.68
206 rdf:type schema:Person
207 sg:person.0700644400.67 schema:affiliation grid-institutes:grid.69566.3a
208 schema:familyName Liu
209 schema:givenName Pan
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67
211 rdf:type schema:Person
212 sg:person.0777447511.55 schema:affiliation grid-institutes:grid.27255.37
213 schema:familyName Ding
214 schema:givenName Yi
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55
216 rdf:type schema:Person
217 sg:pub.10.1007/s12274-009-9007-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021482219
218 https://doi.org/10.1007/s12274-009-9007-x
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s12274-011-0140-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053513233
221 https://doi.org/10.1007/s12274-011-0140-y
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s12274-011-0141-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004575664
224 https://doi.org/10.1007/s12274-011-0141-x
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s12274-012-0198-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015108666
227 https://doi.org/10.1007/s12274-012-0198-1
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s12274-013-0332-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042097970
230 https://doi.org/10.1007/s12274-013-0332-8
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s12274-014-0407-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043750437
233 https://doi.org/10.1007/s12274-014-0407-1
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/35104620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021573346
236 https://doi.org/10.1038/35104620
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nchem.553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017001367
239 https://doi.org/10.1038/nchem.553
240 rdf:type schema:CreativeWork
241 grid-institutes:grid.27255.37 schema:alternateName Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
242 schema:name Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
243 rdf:type schema:Organization
244 grid-institutes:grid.41156.37 schema:alternateName Eco-Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, 210093, Nanjing, China
245 schema:name Eco-Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, 210093, Nanjing, China
246 rdf:type schema:Organization
247 grid-institutes:grid.440770.0 schema:alternateName Resources and Ecologic Research Institute, School of Chemistry and Bioscience, Yili Normal University, 835000, Yining, China
248 schema:name Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
249 Resources and Ecologic Research Institute, School of Chemistry and Bioscience, Yili Normal University, 835000, Yining, China
250 rdf:type schema:Organization
251 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
252 schema:name WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...