Magnetic transitions in graphene derivatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-10

AUTHORS

Pengzhan Sun, Kunlin Wang, Jinquan Wei, Minlin Zhong, Dehai Wu, Hongwei Zhu

ABSTRACT

The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiolfunctionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH > -OH > -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyland carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials. More... »

PAGES

1507-1518

Journal

TITLE

Nano Research

ISSUE

10

VOLUME

7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12274-014-0512-1

DOI

http://dx.doi.org/10.1007/s12274-014-0512-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052571344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Pengzhan", 
        "id": "sg:person.0770734070.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770734070.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kunlin", 
        "id": "sg:person.01145455106.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145455106.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Jinquan", 
        "id": "sg:person.0623053007.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623053007.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Minlin", 
        "id": "sg:person.012106004077.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106004077.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Dehai", 
        "id": "sg:person.0752132433.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752132433.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China", 
            "Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Hongwei", 
        "id": "sg:person.01313174733.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313174733.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004591182", 
          "https://doi.org/10.1038/nature06037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.226401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015347053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.226401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015347053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn4016289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016453990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm00166g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016898189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm32479b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017131793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019070336", 
          "https://doi.org/10.1038/ncomms1643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021216887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cber.19300630543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021221445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2012.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022338270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1sc00726b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023593844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802810g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026635549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802810g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026635549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027148200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027148200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028216647", 
          "https://doi.org/10.1038/srep02566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.125408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030205937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.125408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030205937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031045052", 
          "https://doi.org/10.1038/nphys1962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp903397u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032684574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp903397u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032684574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.024429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.024429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp060936f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp060936f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034507267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034507267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.227201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036560224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.227201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036560224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036669775", 
          "https://doi.org/10.1038/nphys2183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b904093p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b904093p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.073412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040364903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.073412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040364903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043271683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043271683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm30961k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043623721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.092408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045846670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.092408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045846670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.207205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046932039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.207205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046932039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.195428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047875280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.195428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047875280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr34291c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049414072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn9003428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049943400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.096804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052739052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.096804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052739052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma301379z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056196602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl203512c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9020733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9020733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.1682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.1682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.245428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.245428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.085417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.085417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640270"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiolfunctionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH > -OH > -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyland carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12274-014-0512-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042464", 
        "issn": [
          "1998-0124", 
          "1998-0000"
        ], 
        "name": "Nano Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Magnetic transitions in graphene derivatives", 
    "pagination": "1507-1518", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa6a1a096484eb8ac055f886cd3639cf4d00c4627d22c78aab4385a71be54829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12274-014-0512-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052571344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12274-014-0512-1", 
      "https://app.dimensions.ai/details/publication/pub.1052571344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12274-014-0512-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0512-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0512-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0512-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12274-014-0512-1'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12274-014-0512-1 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Nc9c527eec89a48eaa14aa9a0e7d62289
4 schema:citation sg:pub.10.1038/nature06037
5 sg:pub.10.1038/ncomms1643
6 sg:pub.10.1038/nphys1962
7 sg:pub.10.1038/nphys2183
8 sg:pub.10.1038/srep02566
9 https://doi.org/10.1002/cber.19300630543
10 https://doi.org/10.1016/j.carbon.2013.09.002
11 https://doi.org/10.1016/j.nanoen.2012.07.021
12 https://doi.org/10.1021/jp060936f
13 https://doi.org/10.1021/jp903397u
14 https://doi.org/10.1021/ma301379z
15 https://doi.org/10.1021/nl203512c
16 https://doi.org/10.1021/nl802810g
17 https://doi.org/10.1021/nl9020733
18 https://doi.org/10.1021/nn4016289
19 https://doi.org/10.1021/nn9003428
20 https://doi.org/10.1039/b904093p
21 https://doi.org/10.1039/c1sc00726b
22 https://doi.org/10.1039/c2jm00166g
23 https://doi.org/10.1039/c2jm30961k
24 https://doi.org/10.1039/c2jm32479b
25 https://doi.org/10.1039/c3nr34291c
26 https://doi.org/10.1103/physrevb.31.1682
27 https://doi.org/10.1103/physrevb.66.014424
28 https://doi.org/10.1103/physrevb.66.024429
29 https://doi.org/10.1103/physrevb.68.092408
30 https://doi.org/10.1103/physrevb.75.125408
31 https://doi.org/10.1103/physrevb.77.073412
32 https://doi.org/10.1103/physrevb.77.195428
33 https://doi.org/10.1103/physrevb.81.245428
34 https://doi.org/10.1103/physrevb.83.085417
35 https://doi.org/10.1103/physrevb.86.115446
36 https://doi.org/10.1103/physrevb.86.165438
37 https://doi.org/10.1103/physrevlett.101.037203
38 https://doi.org/10.1103/physrevlett.104.096804
39 https://doi.org/10.1103/physrevlett.105.207205
40 https://doi.org/10.1103/physrevlett.106.226401
41 https://doi.org/10.1103/physrevlett.91.227201
42 schema:datePublished 2014-10
43 schema:datePublishedReg 2014-10-01
44 schema:description The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiolfunctionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH > -OH > -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyland carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N9d068991a9ed437689ddcb3bf4a04c1a
49 Nc5eabab2aeeb4dc59a35426d4084ee50
50 sg:journal.1042464
51 schema:name Magnetic transitions in graphene derivatives
52 schema:pagination 1507-1518
53 schema:productId N172d1ab47f7e450780d8add75eefcc6d
54 N1e768aa37eb54eca926834707d1107c8
55 N22c53eaa42284fd6b6bb6d81c6c3f61e
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052571344
57 https://doi.org/10.1007/s12274-014-0512-1
58 schema:sdDatePublished 2019-04-11T02:11
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N1f8128504a364bcc8c0a69dd544b5b5d
61 schema:url http://link.springer.com/10.1007%2Fs12274-014-0512-1
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N172d1ab47f7e450780d8add75eefcc6d schema:name dimensions_id
66 schema:value pub.1052571344
67 rdf:type schema:PropertyValue
68 N1e768aa37eb54eca926834707d1107c8 schema:name readcube_id
69 schema:value fa6a1a096484eb8ac055f886cd3639cf4d00c4627d22c78aab4385a71be54829
70 rdf:type schema:PropertyValue
71 N1f8128504a364bcc8c0a69dd544b5b5d schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N22c53eaa42284fd6b6bb6d81c6c3f61e schema:name doi
74 schema:value 10.1007/s12274-014-0512-1
75 rdf:type schema:PropertyValue
76 N49e725ac719d41ba913e38a93fc62ea8 rdf:first sg:person.0752132433.08
77 rdf:rest Nb3ed8fa337404bd3b2f30b36c4b36411
78 N5f690d26bede4a2cafa178292b59589c rdf:first sg:person.012106004077.54
79 rdf:rest N49e725ac719d41ba913e38a93fc62ea8
80 N68ef3a53c78a4660905378c60bf0cfdf rdf:first sg:person.01145455106.29
81 rdf:rest Nf585b85468c34ba38b898f2bcbd4e619
82 N9d068991a9ed437689ddcb3bf4a04c1a schema:volumeNumber 7
83 rdf:type schema:PublicationVolume
84 Nb3ed8fa337404bd3b2f30b36c4b36411 rdf:first sg:person.01313174733.09
85 rdf:rest rdf:nil
86 Nc5eabab2aeeb4dc59a35426d4084ee50 schema:issueNumber 10
87 rdf:type schema:PublicationIssue
88 Nc9c527eec89a48eaa14aa9a0e7d62289 rdf:first sg:person.0770734070.78
89 rdf:rest N68ef3a53c78a4660905378c60bf0cfdf
90 Nf585b85468c34ba38b898f2bcbd4e619 rdf:first sg:person.0623053007.38
91 rdf:rest N5f690d26bede4a2cafa178292b59589c
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
96 schema:name Inorganic Chemistry
97 rdf:type schema:DefinedTerm
98 sg:journal.1042464 schema:issn 1998-0000
99 1998-0124
100 schema:name Nano Research
101 rdf:type schema:Periodical
102 sg:person.01145455106.29 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
103 schema:familyName Wang
104 schema:givenName Kunlin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145455106.29
106 rdf:type schema:Person
107 sg:person.012106004077.54 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
108 schema:familyName Zhong
109 schema:givenName Minlin
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106004077.54
111 rdf:type schema:Person
112 sg:person.01313174733.09 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
113 schema:familyName Zhu
114 schema:givenName Hongwei
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313174733.09
116 rdf:type schema:Person
117 sg:person.0623053007.38 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
118 schema:familyName Wei
119 schema:givenName Jinquan
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623053007.38
121 rdf:type schema:Person
122 sg:person.0752132433.08 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
123 schema:familyName Wu
124 schema:givenName Dehai
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752132433.08
126 rdf:type schema:Person
127 sg:person.0770734070.78 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
128 schema:familyName Sun
129 schema:givenName Pengzhan
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770734070.78
131 rdf:type schema:Person
132 sg:pub.10.1038/nature06037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591182
133 https://doi.org/10.1038/nature06037
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/ncomms1643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019070336
136 https://doi.org/10.1038/ncomms1643
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphys1962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031045052
139 https://doi.org/10.1038/nphys1962
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys2183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036669775
142 https://doi.org/10.1038/nphys2183
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/srep02566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028216647
145 https://doi.org/10.1038/srep02566
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/cber.19300630543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021221445
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.carbon.2013.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021216887
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.nanoen.2012.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022338270
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/jp060936f schema:sameAs https://app.dimensions.ai/details/publication/pub.1033316831
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/jp903397u schema:sameAs https://app.dimensions.ai/details/publication/pub.1032684574
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ma301379z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056196602
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/nl203512c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218998
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/nl802810g schema:sameAs https://app.dimensions.ai/details/publication/pub.1026635549
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/nl9020733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222100
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nn4016289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016453990
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nn9003428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049943400
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1039/b904093p schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419886
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/c1sc00726b schema:sameAs https://app.dimensions.ai/details/publication/pub.1023593844
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/c2jm00166g schema:sameAs https://app.dimensions.ai/details/publication/pub.1016898189
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1039/c2jm30961k schema:sameAs https://app.dimensions.ai/details/publication/pub.1043623721
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1039/c2jm32479b schema:sameAs https://app.dimensions.ai/details/publication/pub.1017131793
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1039/c3nr34291c schema:sameAs https://app.dimensions.ai/details/publication/pub.1049414072
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.31.1682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060536773
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.66.014424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034507267
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.66.024429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033090407
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.68.092408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045846670
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.75.125408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030205937
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.77.073412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040364903
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.77.195428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047875280
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.81.245428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633030
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.83.085417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634975
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.86.115446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043271683
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.86.165438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640270
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.101.037203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027148200
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.104.096804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052739052
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.105.207205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046932039
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.106.226401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015347053
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.91.227201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036560224
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
214 schema:name Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China
215 Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
216 School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, 100084, Beijing, China
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...