Chemical genetics-based development of small molecules targeting hepatitis C virus View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-30

AUTHORS

Guanghai Jin, Jisu Lee, Kyeong Lee

ABSTRACT

Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today’s advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure–activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug’s mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods. More... »

PAGES

1021-1036

References to SciGraph publications

  • 2016-07-11. Ombitasvir/Paritaprevir/Ritonavir: A Review in Chronic HCV Genotype 4 Infection in DRUGS
  • 2015-07-09. Existing drugs and their application in drug discovery targeting cancer stem cells in ARCHIVES OF PHARMACAL RESEARCH
  • 2015-08-01. Considerations of the chemical biology of microbial natural products provide an effective drug discovery strategy in ARCHIVES OF PHARMACAL RESEARCH
  • 2010-04-21. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect in NATURE
  • 2014-01-18. Sofosbuvir: First Global Approval in DRUGS
  • 2015-06-10. Ombitasvir/Paritaprevir/Ritonavir Plus Dasabuvir: A Review in Chronic HCV Genotype 1 Infection in DRUGS
  • 2015-07-28. Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery in ARCHIVES OF PHARMACAL RESEARCH
  • 2011-09. Discovery of hepatitis C virus NS5A inhibitors as a new class of anti-HCV therapy in ARCHIVES OF PHARMACAL RESEARCH
  • 2008-08-31. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis in NATURE BIOTECHNOLOGY
  • 2015-08-11. Next-generation antimicrobials: from chemical biology to first-in-class drugs in ARCHIVES OF PHARMACAL RESEARCH
  • 2002-11. Hepatitis C therapeutics: current status and emerging strategies in NATURE REVIEWS DRUG DISCOVERY
  • 2013-08-09. Chemical genetics strategies for identification of molecular targets in PHYTOCHEMISTRY REVIEWS
  • 2016-10-11. Sofosbuvir/Velpatasvir: A Review in Chronic Hepatitis C in DRUGS
  • 2015-07-25. Role of computer-aided drug design in modern drug discovery in ARCHIVES OF PHARMACAL RESEARCH
  • 2015-08-05. Application of chemical biology in target identification and drug discovery in ARCHIVES OF PHARMACAL RESEARCH
  • 2011-06-23. Antiviral drugs against hepatitis C virus in GENETIC VACCINES AND THERAPY
  • 2015-07-23. Drug compound characterization by mass spectrometry imaging in cancer tissue in ARCHIVES OF PHARMACAL RESEARCH
  • 2016-12-07. Sofosbuvir/velpatasvir: a pangenotypic drug to simplify HCV therapy in HEPATOLOGY INTERNATIONAL
  • 2015-04-03. Ledipasvir/Sofosbuvir: A Review of Its Use in Chronic Hepatitis C in DRUGS
  • 2015-08-08. Affinity purification in target identification: the specificity challenge in ARCHIVES OF PHARMACAL RESEARCH
  • 2015-07-22. Organelle-specific Hsp90 inhibitors in ARCHIVES OF PHARMACAL RESEARCH
  • 2016-08-22. Daclatasvir: A Review in Chronic Hepatitis C in DRUGS
  • 2011-11-08. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus in NATURE BIOTECHNOLOGY
  • 2015-08-27. Chemical biology approach for the development of hypoxia inducible factor (HIF) inhibitor LW6 as a potential anticancer agent in ARCHIVES OF PHARMACAL RESEARCH
  • 2015-06-04. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery in ARCHIVES OF PHARMACAL RESEARCH
  • 2015-07-17. Chemical biology of compounds obtained from screening using disease models in ARCHIVES OF PHARMACAL RESEARCH
  • 2016-03-04. Elbasvir/Grazoprevir: First Global Approval in DRUGS
  • 2015-07-18. Identification of a thienopyrimidine derivatives target by a kinome and chemical biology approach in ARCHIVES OF PHARMACAL RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12272-017-0949-3

    DOI

    http://dx.doi.org/10.1007/s12272-017-0949-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091398283

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28856597


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antiviral Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Discovery", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Therapy, Combination", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepacivirus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepatitis C", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Targeted Therapy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.255168.d", 
              "name": [
                "College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jin", 
            "givenName": "Guanghai", 
            "id": "sg:person.01266610600.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266610600.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.255168.d", 
              "name": [
                "College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Jisu", 
            "id": "sg:person.012042041667.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012042041667.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.255168.d", 
              "name": [
                "College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Kyeong", 
            "id": "sg:person.01250671172.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250671172.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12272-015-0618-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025638691", 
              "https://doi.org/10.1007/s12272-015-0618-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051305415", 
              "https://doi.org/10.1038/nbt.1490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0627-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048750584", 
              "https://doi.org/10.1007/s12272-015-0627-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0634-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018312563", 
              "https://doi.org/10.1007/s12272-015-0634-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0640-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001396921", 
              "https://doi.org/10.1007/s12272-015-0640-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-014-0179-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022521839", 
              "https://doi.org/10.1007/s40265-014-0179-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-016-0558-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001921703", 
              "https://doi.org/10.1007/s40265-016-0558-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0628-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053217423", 
              "https://doi.org/10.1007/s12272-015-0628-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-016-0612-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051093677", 
              "https://doi.org/10.1007/s40265-016-0612-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013596048", 
              "https://doi.org/10.1038/nature08960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-016-0632-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007103748", 
              "https://doi.org/10.1007/s40265-016-0632-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1479-0556-9-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026517121", 
              "https://doi.org/10.1186/1479-0556-9-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0639-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011548966", 
              "https://doi.org/10.1007/s12272-015-0639-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0643-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031921798", 
              "https://doi.org/10.1007/s12272-015-0643-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0632-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034713853", 
              "https://doi.org/10.1007/s12272-015-0632-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0636-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040459513", 
              "https://doi.org/10.1007/s12272-015-0636-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-015-0412-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043787782", 
              "https://doi.org/10.1007/s40265-015-0412-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016293987", 
              "https://doi.org/10.1038/nbt.2020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0638-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035392488", 
              "https://doi.org/10.1007/s12272-015-0638-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-016-0648-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053220224", 
              "https://doi.org/10.1007/s40265-016-0648-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12072-016-9776-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012767297", 
              "https://doi.org/10.1007/s12072-016-9776-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11101-013-9312-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019829604", 
              "https://doi.org/10.1007/s11101-013-9312-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-011-0921-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004380008", 
              "https://doi.org/10.1007/s12272-011-0921-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0635-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047169393", 
              "https://doi.org/10.1007/s12272-015-0635-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0645-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040157498", 
              "https://doi.org/10.1007/s12272-015-0645-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-015-0633-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013101059", 
              "https://doi.org/10.1007/s12272-015-0633-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-015-0381-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000812645", 
              "https://doi.org/10.1007/s40265-015-0381-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017042912", 
              "https://doi.org/10.1038/nrd937"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-30", 
        "datePublishedReg": "2017-08-30", 
        "description": "Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today\u2019s advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFN\u03b1 with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFN\u03b1 and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni\u00ae, Zepatier\u00ae, Technivie\u00ae, and Epclusa\u00ae. A number of reviews have been recently published describing the structure\u2013activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug\u2019s mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12272-017-0949-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1090680", 
            "issn": [
              "0253-6269", 
              "1976-3786"
            ], 
            "name": "Archives of Pharmacal Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "standard of care", 
          "PEG-IFN\u03b1", 
          "hepatitis C virus infection", 
          "combination of HCV", 
          "C virus infection", 
          "hepatitis C infection", 
          "advanced medical technology", 
          "current therapeutic approaches", 
          "hepatitis C virus", 
          "HCV drug discovery", 
          "anti-viral agents", 
          "NS3/4A protease inhibitors", 
          "acting antivirals", 
          "C infection", 
          "most patients", 
          "common therapy", 
          "C virus", 
          "clinical trials", 
          "general screening approach", 
          "virus infection", 
          "therapeutic approaches", 
          "HCV proteins", 
          "side effects", 
          "novel small molecules", 
          "HCV inhibitors", 
          "ribavirin", 
          "efficient therapy", 
          "significant disease", 
          "drug mechanisms", 
          "major worldwide problem", 
          "structure-activity relationships", 
          "protease inhibitors", 
          "viral lifecycle", 
          "therapy", 
          "infection", 
          "molecular mechanisms", 
          "inhibitors", 
          "worldwide problem", 
          "medical technology", 
          "small molecules", 
          "valuable strategy", 
          "screening approach", 
          "dasabuvir", 
          "HCV", 
          "asunaprevir", 
          "boceprevir", 
          "telaprevir", 
          "simeprevir", 
          "patients", 
          "daclatasvir", 
          "review", 
          "drug discovery", 
          "sofosbuvir", 
          "vaccine", 
          "antivirals", 
          "elbasvir", 
          "years", 
          "disease", 
          "Harvoni", 
          "trials", 
          "care", 
          "Zepatier", 
          "virus", 
          "Epclusa", 
          "number of reviews", 
          "approval", 
          "mechanism", 
          "genetics", 
          "chemical genetic method", 
          "humans", 
          "target identification", 
          "agents", 
          "combination", 
          "target", 
          "development", 
          "protein", 
          "biological processes", 
          "action", 
          "molecules", 
          "effect", 
          "chemical genetics", 
          "genetic methods", 
          "use", 
          "identification", 
          "method", 
          "biology", 
          "strategies", 
          "relationship", 
          "number", 
          "discovery", 
          "standards", 
          "variety", 
          "powerful tool", 
          "approach", 
          "tool", 
          "information", 
          "target identification methods", 
          "successful examples", 
          "problem", 
          "process", 
          "chemical biology", 
          "technology", 
          "identification method", 
          "example", 
          "lifecycle"
        ], 
        "name": "Chemical genetics-based development of small molecules targeting hepatitis C virus", 
        "pagination": "1021-1036", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091398283"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12272-017-0949-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28856597"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12272-017-0949-3", 
          "https://app.dimensions.ai/details/publication/pub.1091398283"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_751.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12272-017-0949-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12272-017-0949-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12272-017-0949-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12272-017-0949-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12272-017-0949-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    328 TRIPLES      21 PREDICATES      167 URIs      131 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12272-017-0949-3 schema:about N1e84e97293ae4713b1d118422d42eb32
    2 N214bbe5b0aae4e5286477944df97dad4
    3 N22b6a01ac69843eba3bd7af3a2cad340
    4 N236f872e9f45400fb2cd84a20f0ea5fe
    5 N66ecc96ec1234b5187cb9ee06ca94df6
    6 N7f0fba2224ac4d90909281a1c0deb22e
    7 Nc89cd5336bbf49958dbbe66dd9cdb02c
    8 Nd06a00e463a8416a815ba59ec21f7636
    9 Nd9ed65df6b4845bdaab5e364b3beed6d
    10 anzsrc-for:11
    11 anzsrc-for:1108
    12 schema:author N73b6b768b9a4486b85da93e4fc45095f
    13 schema:citation sg:pub.10.1007/s11101-013-9312-6
    14 sg:pub.10.1007/s12072-016-9776-8
    15 sg:pub.10.1007/s12272-011-0921-6
    16 sg:pub.10.1007/s12272-015-0618-3
    17 sg:pub.10.1007/s12272-015-0627-2
    18 sg:pub.10.1007/s12272-015-0628-1
    19 sg:pub.10.1007/s12272-015-0632-5
    20 sg:pub.10.1007/s12272-015-0633-4
    21 sg:pub.10.1007/s12272-015-0634-3
    22 sg:pub.10.1007/s12272-015-0635-2
    23 sg:pub.10.1007/s12272-015-0636-1
    24 sg:pub.10.1007/s12272-015-0638-z
    25 sg:pub.10.1007/s12272-015-0639-y
    26 sg:pub.10.1007/s12272-015-0640-5
    27 sg:pub.10.1007/s12272-015-0643-2
    28 sg:pub.10.1007/s12272-015-0645-0
    29 sg:pub.10.1007/s40265-014-0179-7
    30 sg:pub.10.1007/s40265-015-0381-2
    31 sg:pub.10.1007/s40265-015-0412-z
    32 sg:pub.10.1007/s40265-016-0558-3
    33 sg:pub.10.1007/s40265-016-0612-1
    34 sg:pub.10.1007/s40265-016-0632-x
    35 sg:pub.10.1007/s40265-016-0648-2
    36 sg:pub.10.1038/nature08960
    37 sg:pub.10.1038/nbt.1490
    38 sg:pub.10.1038/nbt.2020
    39 sg:pub.10.1038/nrd937
    40 sg:pub.10.1186/1479-0556-9-11
    41 schema:datePublished 2017-08-30
    42 schema:datePublishedReg 2017-08-30
    43 schema:description Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today’s advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure–activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug’s mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
    44 schema:genre article
    45 schema:isAccessibleForFree false
    46 schema:isPartOf Na2ed02fdf9144a5797ccd0fe40b936a9
    47 Nd48ba853e67042c8b55ac1fea6ca1744
    48 sg:journal.1090680
    49 schema:keywords C infection
    50 C virus
    51 C virus infection
    52 Epclusa
    53 HCV
    54 HCV drug discovery
    55 HCV inhibitors
    56 HCV proteins
    57 Harvoni
    58 NS3/4A protease inhibitors
    59 PEG-IFNα
    60 Zepatier
    61 acting antivirals
    62 action
    63 advanced medical technology
    64 agents
    65 anti-viral agents
    66 antivirals
    67 approach
    68 approval
    69 asunaprevir
    70 biological processes
    71 biology
    72 boceprevir
    73 care
    74 chemical biology
    75 chemical genetic method
    76 chemical genetics
    77 clinical trials
    78 combination
    79 combination of HCV
    80 common therapy
    81 current therapeutic approaches
    82 daclatasvir
    83 dasabuvir
    84 development
    85 discovery
    86 disease
    87 drug discovery
    88 drug mechanisms
    89 effect
    90 efficient therapy
    91 elbasvir
    92 example
    93 general screening approach
    94 genetic methods
    95 genetics
    96 hepatitis C infection
    97 hepatitis C virus
    98 hepatitis C virus infection
    99 humans
    100 identification
    101 identification method
    102 infection
    103 information
    104 inhibitors
    105 lifecycle
    106 major worldwide problem
    107 mechanism
    108 medical technology
    109 method
    110 molecular mechanisms
    111 molecules
    112 most patients
    113 novel small molecules
    114 number
    115 number of reviews
    116 patients
    117 powerful tool
    118 problem
    119 process
    120 protease inhibitors
    121 protein
    122 relationship
    123 review
    124 ribavirin
    125 screening approach
    126 side effects
    127 significant disease
    128 simeprevir
    129 small molecules
    130 sofosbuvir
    131 standard of care
    132 standards
    133 strategies
    134 structure-activity relationships
    135 successful examples
    136 target
    137 target identification
    138 target identification methods
    139 technology
    140 telaprevir
    141 therapeutic approaches
    142 therapy
    143 tool
    144 trials
    145 use
    146 vaccine
    147 valuable strategy
    148 variety
    149 viral lifecycle
    150 virus
    151 virus infection
    152 worldwide problem
    153 years
    154 schema:name Chemical genetics-based development of small molecules targeting hepatitis C virus
    155 schema:pagination 1021-1036
    156 schema:productId N100b872428ca437ebb1a5a1efa973ca5
    157 N2c57e8860ef84f808ef7d3daaa443f66
    158 Nf2f2e7f2a1524ed9a34cea03a0ce7757
    159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091398283
    160 https://doi.org/10.1007/s12272-017-0949-3
    161 schema:sdDatePublished 2022-11-24T21:03
    162 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    163 schema:sdPublisher N77dbdffad181477786bec5e8a3d77ef7
    164 schema:url https://doi.org/10.1007/s12272-017-0949-3
    165 sgo:license sg:explorer/license/
    166 sgo:sdDataset articles
    167 rdf:type schema:ScholarlyArticle
    168 N0f00b6814ede4506a6a2f081748feb4d rdf:first sg:person.012042041667.28
    169 rdf:rest N4a5664ae5e6445e0a0a4eb50394d6266
    170 N100b872428ca437ebb1a5a1efa973ca5 schema:name dimensions_id
    171 schema:value pub.1091398283
    172 rdf:type schema:PropertyValue
    173 N1e84e97293ae4713b1d118422d42eb32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Genotype
    175 rdf:type schema:DefinedTerm
    176 N214bbe5b0aae4e5286477944df97dad4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Hepatitis C
    178 rdf:type schema:DefinedTerm
    179 N22b6a01ac69843eba3bd7af3a2cad340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Humans
    181 rdf:type schema:DefinedTerm
    182 N236f872e9f45400fb2cd84a20f0ea5fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Drug Discovery
    184 rdf:type schema:DefinedTerm
    185 N2c57e8860ef84f808ef7d3daaa443f66 schema:name doi
    186 schema:value 10.1007/s12272-017-0949-3
    187 rdf:type schema:PropertyValue
    188 N4a5664ae5e6445e0a0a4eb50394d6266 rdf:first sg:person.01250671172.62
    189 rdf:rest rdf:nil
    190 N66ecc96ec1234b5187cb9ee06ca94df6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Drug Therapy, Combination
    192 rdf:type schema:DefinedTerm
    193 N73b6b768b9a4486b85da93e4fc45095f rdf:first sg:person.01266610600.22
    194 rdf:rest N0f00b6814ede4506a6a2f081748feb4d
    195 N77dbdffad181477786bec5e8a3d77ef7 schema:name Springer Nature - SN SciGraph project
    196 rdf:type schema:Organization
    197 N7f0fba2224ac4d90909281a1c0deb22e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Molecular Targeted Therapy
    199 rdf:type schema:DefinedTerm
    200 Na2ed02fdf9144a5797ccd0fe40b936a9 schema:issueNumber 9
    201 rdf:type schema:PublicationIssue
    202 Nc89cd5336bbf49958dbbe66dd9cdb02c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Drug Design
    204 rdf:type schema:DefinedTerm
    205 Nd06a00e463a8416a815ba59ec21f7636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Hepacivirus
    207 rdf:type schema:DefinedTerm
    208 Nd48ba853e67042c8b55ac1fea6ca1744 schema:volumeNumber 40
    209 rdf:type schema:PublicationVolume
    210 Nd9ed65df6b4845bdaab5e364b3beed6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Antiviral Agents
    212 rdf:type schema:DefinedTerm
    213 Nf2f2e7f2a1524ed9a34cea03a0ce7757 schema:name pubmed_id
    214 schema:value 28856597
    215 rdf:type schema:PropertyValue
    216 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Medical and Health Sciences
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Medical Microbiology
    221 rdf:type schema:DefinedTerm
    222 sg:journal.1090680 schema:issn 0253-6269
    223 1976-3786
    224 schema:name Archives of Pharmacal Research
    225 schema:publisher Springer Nature
    226 rdf:type schema:Periodical
    227 sg:person.012042041667.28 schema:affiliation grid-institutes:grid.255168.d
    228 schema:familyName Lee
    229 schema:givenName Jisu
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012042041667.28
    231 rdf:type schema:Person
    232 sg:person.01250671172.62 schema:affiliation grid-institutes:grid.255168.d
    233 schema:familyName Lee
    234 schema:givenName Kyeong
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250671172.62
    236 rdf:type schema:Person
    237 sg:person.01266610600.22 schema:affiliation grid-institutes:grid.255168.d
    238 schema:familyName Jin
    239 schema:givenName Guanghai
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266610600.22
    241 rdf:type schema:Person
    242 sg:pub.10.1007/s11101-013-9312-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019829604
    243 https://doi.org/10.1007/s11101-013-9312-6
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s12072-016-9776-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012767297
    246 https://doi.org/10.1007/s12072-016-9776-8
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s12272-011-0921-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004380008
    249 https://doi.org/10.1007/s12272-011-0921-6
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s12272-015-0618-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025638691
    252 https://doi.org/10.1007/s12272-015-0618-3
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s12272-015-0627-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048750584
    255 https://doi.org/10.1007/s12272-015-0627-2
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s12272-015-0628-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053217423
    258 https://doi.org/10.1007/s12272-015-0628-1
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s12272-015-0632-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034713853
    261 https://doi.org/10.1007/s12272-015-0632-5
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s12272-015-0633-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013101059
    264 https://doi.org/10.1007/s12272-015-0633-4
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s12272-015-0634-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018312563
    267 https://doi.org/10.1007/s12272-015-0634-3
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s12272-015-0635-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047169393
    270 https://doi.org/10.1007/s12272-015-0635-2
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s12272-015-0636-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040459513
    273 https://doi.org/10.1007/s12272-015-0636-1
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s12272-015-0638-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035392488
    276 https://doi.org/10.1007/s12272-015-0638-z
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s12272-015-0639-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011548966
    279 https://doi.org/10.1007/s12272-015-0639-y
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s12272-015-0640-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001396921
    282 https://doi.org/10.1007/s12272-015-0640-5
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s12272-015-0643-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031921798
    285 https://doi.org/10.1007/s12272-015-0643-2
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s12272-015-0645-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040157498
    288 https://doi.org/10.1007/s12272-015-0645-0
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s40265-014-0179-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521839
    291 https://doi.org/10.1007/s40265-014-0179-7
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s40265-015-0381-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000812645
    294 https://doi.org/10.1007/s40265-015-0381-2
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s40265-015-0412-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043787782
    297 https://doi.org/10.1007/s40265-015-0412-z
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s40265-016-0558-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001921703
    300 https://doi.org/10.1007/s40265-016-0558-3
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s40265-016-0612-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051093677
    303 https://doi.org/10.1007/s40265-016-0612-1
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/s40265-016-0632-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007103748
    306 https://doi.org/10.1007/s40265-016-0632-x
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s40265-016-0648-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053220224
    309 https://doi.org/10.1007/s40265-016-0648-2
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nature08960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013596048
    312 https://doi.org/10.1038/nature08960
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/nbt.1490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051305415
    315 https://doi.org/10.1038/nbt.1490
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nbt.2020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016293987
    318 https://doi.org/10.1038/nbt.2020
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/nrd937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017042912
    321 https://doi.org/10.1038/nrd937
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/1479-0556-9-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026517121
    324 https://doi.org/10.1186/1479-0556-9-11
    325 rdf:type schema:CreativeWork
    326 grid-institutes:grid.255168.d schema:alternateName College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
    327 schema:name College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
    328 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...