Integrated Bioinformatics Analysis of Potential Biomarkers for Prostate Cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jiufeng Tan, Xuefei Jin, Kaichen Wang

ABSTRACT

The aim was to expound the pathogenesis of prostate cancer and to identify the potentially biomarkers for prostate cancer (PC). DNA methylation microarray data GSE38240 containing 8 prostate cancer metastases and 4 normal prostate samples as well as gene expression profile data GSE26910 containing 6 prostate primary tumors and 6 normal samples were used. Differentially expressed genes (DEGs) and differently methylated sites of PC were screened and the regulatory network was constructed with DEGs-related transcription factors (TFs). The obtained hub genes were subjected to protein-protein interaction network analysis. Enrichment analysis of down-regulated DEGs were performed. Total 351 DEGs including 190 down-regulated and 161 up-regulated genes and 3234 differently methylated sites were identified. In total 69 DEGs-related TFs were found. Regulatory network contained 1301 nodes and 2527 connection pairs and that FOXA1 (forkhead box A1), BZRAP1-AS1 (benzodiazapine receptor associated protein 1 antisense RNA 1) and KRT8 (keratin 8) were the top three nodes of it. The enriched GO terms were mainly biological activity of the blood and cells-related. Total 29 DEGs (such as AGTR1, angiotensin II receptor, type 1) and 57 none-DEGs involved in the PPI network. Biological functions in blood circulation and the involved AGTR1 may play important roles in PC by gene-methylation. Besides, BZRAP1-AS1 may be novel biomarker related with PC. More... »

PAGES

1-6

Journal

TITLE

Pathology & Oncology Research

ISSUE

2

VOLUME

25

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12253-017-0346-8

DOI

http://dx.doi.org/10.1007/s12253-017-0346-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099719647

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29260398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China-Japan Friendship Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415954.8", 
          "name": [
            "Department of urology, China-Japan Union Hospital of Jilin University, 126 Xiantai ST, 130033, Changchun, Jilin Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Jiufeng", 
        "id": "sg:person.07633050634.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633050634.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China-Japan Friendship Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415954.8", 
          "name": [
            "Department of urology, China-Japan Union Hospital of Jilin University, 126 Xiantai ST, 130033, Changchun, Jilin Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Xuefei", 
        "id": "sg:person.01005322075.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005322075.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China-Japan Friendship Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415954.8", 
          "name": [
            "Department of urology, China-Japan Union Hospital of Jilin University, 126 Xiantai ST, 130033, Changchun, Jilin Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kaichen", 
        "id": "sg:person.011537672645.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537672645.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/epi.11.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005689442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009175143", 
          "https://doi.org/10.1038/nbt.2158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-12-0460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009539298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-4495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020526294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-011-1026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022353508", 
          "https://doi.org/10.1007/s11033-011-1026-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023238985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198601163140301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023924449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0068162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024407492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025608399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.28134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026169459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-13-0578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033565775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3005211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037562713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037731520", 
          "https://doi.org/10.1186/1471-2105-8-426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037731520", 
          "https://doi.org/10.1186/1471-2105-8-426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0018640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039054263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.22066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041522148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042658854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbapap.2013.01.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2010.03097.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045244483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.1880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045507585", 
          "https://doi.org/10.1038/nm.1880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0900351106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050778792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/srb10abs141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058211969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1538-7445.am2013-1974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063248728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1538-7445.am2013-5130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063252155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.07.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/mend.14.6.0488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064332009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)35000-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082558840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03401728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083231572", 
          "https://doi.org/10.1007/bf03401728"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The aim was to expound the pathogenesis of prostate cancer and to identify the potentially biomarkers for prostate cancer (PC). DNA methylation microarray data GSE38240 containing 8 prostate cancer metastases and 4 normal prostate samples as well as gene expression profile data GSE26910 containing 6 prostate primary tumors and 6 normal samples were used. Differentially expressed genes (DEGs) and differently methylated sites of PC were screened and the regulatory network was constructed with DEGs-related transcription factors (TFs). The obtained hub genes were subjected to protein-protein interaction network analysis. Enrichment analysis of down-regulated DEGs were performed. Total 351 DEGs including 190 down-regulated and 161 up-regulated genes and 3234 differently methylated sites were identified. In total 69 DEGs-related TFs were found. Regulatory network contained 1301 nodes and 2527 connection pairs and that FOXA1 (forkhead box A1), BZRAP1-AS1 (benzodiazapine receptor associated protein 1 antisense RNA 1) and KRT8 (keratin 8) were the top three nodes of it. The enriched GO terms were mainly biological activity of the blood and cells-related. Total 29 DEGs (such as AGTR1, angiotensin II receptor, type 1) and 57 none-DEGs involved in the PPI network. Biological functions in blood circulation and the involved AGTR1 may play important roles in PC by gene-methylation. Besides, BZRAP1-AS1 may be novel biomarker related with PC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12253-017-0346-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1116758", 
        "issn": [
          "1219-4956", 
          "1532-2807"
        ], 
        "name": "Pathology & Oncology Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Integrated Bioinformatics Analysis of Potential Biomarkers for Prostate Cancer", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f65db6d9ad85f41de67f08b83065808e481d89f20590f9c48cc73df5b0027d0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29260398"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9706087"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12253-017-0346-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099719647"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12253-017-0346-8", 
      "https://app.dimensions.ai/details/publication/pub.1099719647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12253-017-0346-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12253-017-0346-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12253-017-0346-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12253-017-0346-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12253-017-0346-8'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12253-017-0346-8 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N35435b5713364f599bb077bbba0b8bc3
4 schema:citation sg:pub.10.1007/bf03401728
5 sg:pub.10.1007/s11033-011-1026-5
6 sg:pub.10.1038/nbt.2158
7 sg:pub.10.1038/nm.1880
8 sg:pub.10.1186/1471-2105-8-426
9 https://doi.org/10.1002/ijc.28134
10 https://doi.org/10.1002/jso.22066
11 https://doi.org/10.1016/j.bbapap.2013.01.030
12 https://doi.org/10.1016/s0022-5347(17)35000-0
13 https://doi.org/10.1056/nejm198601163140301
14 https://doi.org/10.1071/srb10abs141
15 https://doi.org/10.1073/pnas.0900351106
16 https://doi.org/10.1093/bioinformatics/btg405
17 https://doi.org/10.1093/nar/gkq973
18 https://doi.org/10.1093/nar/gkt1168
19 https://doi.org/10.1101/gr.1239303
20 https://doi.org/10.1111/j.1464-5491.2010.03097.x
21 https://doi.org/10.1126/scitranslmed.3005211
22 https://doi.org/10.1158/0008-5472.can-13-0578
23 https://doi.org/10.1158/1078-0432.ccr-07-4495
24 https://doi.org/10.1158/1538-7445.am2013-1974
25 https://doi.org/10.1158/1538-7445.am2013-5130
26 https://doi.org/10.1158/2159-8290.cd-12-0460
27 https://doi.org/10.1200/jco.2004.07.151
28 https://doi.org/10.1210/mend.14.6.0488
29 https://doi.org/10.1371/journal.pone.0018640
30 https://doi.org/10.1371/journal.pone.0068162
31 https://doi.org/10.1371/journal.pone.0079231
32 https://doi.org/10.2217/epi.11.105
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description The aim was to expound the pathogenesis of prostate cancer and to identify the potentially biomarkers for prostate cancer (PC). DNA methylation microarray data GSE38240 containing 8 prostate cancer metastases and 4 normal prostate samples as well as gene expression profile data GSE26910 containing 6 prostate primary tumors and 6 normal samples were used. Differentially expressed genes (DEGs) and differently methylated sites of PC were screened and the regulatory network was constructed with DEGs-related transcription factors (TFs). The obtained hub genes were subjected to protein-protein interaction network analysis. Enrichment analysis of down-regulated DEGs were performed. Total 351 DEGs including 190 down-regulated and 161 up-regulated genes and 3234 differently methylated sites were identified. In total 69 DEGs-related TFs were found. Regulatory network contained 1301 nodes and 2527 connection pairs and that FOXA1 (forkhead box A1), BZRAP1-AS1 (benzodiazapine receptor associated protein 1 antisense RNA 1) and KRT8 (keratin 8) were the top three nodes of it. The enriched GO terms were mainly biological activity of the blood and cells-related. Total 29 DEGs (such as AGTR1, angiotensin II receptor, type 1) and 57 none-DEGs involved in the PPI network. Biological functions in blood circulation and the involved AGTR1 may play important roles in PC by gene-methylation. Besides, BZRAP1-AS1 may be novel biomarker related with PC.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N9494ad8ffee44599a19f0bd1bbf6d06d
40 N99f1cdfc84bd417c8779753db2019209
41 sg:journal.1116758
42 schema:name Integrated Bioinformatics Analysis of Potential Biomarkers for Prostate Cancer
43 schema:pagination 1-6
44 schema:productId N2ea2408d514c4b20a15b6cf1c464f874
45 Nb144857a01ac49838cb9bae41ed9ac1f
46 Nc128b0ff5108454facd47d03325c2037
47 Ncb2e94f9299f4bacb2ac0d657032273b
48 Ndac7e2e4502547d09ac140e3ecf2789a
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099719647
50 https://doi.org/10.1007/s12253-017-0346-8
51 schema:sdDatePublished 2019-04-11T14:30
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N971eed938f004526baf02a7c63031bb2
54 schema:url https://link.springer.com/10.1007%2Fs12253-017-0346-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2ea2408d514c4b20a15b6cf1c464f874 schema:name pubmed_id
59 schema:value 29260398
60 rdf:type schema:PropertyValue
61 N35435b5713364f599bb077bbba0b8bc3 rdf:first sg:person.07633050634.40
62 rdf:rest N445bd92cddd6464494db442533606855
63 N445bd92cddd6464494db442533606855 rdf:first sg:person.01005322075.46
64 rdf:rest Nac7175efee094fbd9fd95dedf0ea2a99
65 N9494ad8ffee44599a19f0bd1bbf6d06d schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N971eed938f004526baf02a7c63031bb2 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N99f1cdfc84bd417c8779753db2019209 schema:volumeNumber 25
70 rdf:type schema:PublicationVolume
71 Nac7175efee094fbd9fd95dedf0ea2a99 rdf:first sg:person.011537672645.21
72 rdf:rest rdf:nil
73 Nb144857a01ac49838cb9bae41ed9ac1f schema:name doi
74 schema:value 10.1007/s12253-017-0346-8
75 rdf:type schema:PropertyValue
76 Nc128b0ff5108454facd47d03325c2037 schema:name dimensions_id
77 schema:value pub.1099719647
78 rdf:type schema:PropertyValue
79 Ncb2e94f9299f4bacb2ac0d657032273b schema:name nlm_unique_id
80 schema:value 9706087
81 rdf:type schema:PropertyValue
82 Ndac7e2e4502547d09ac140e3ecf2789a schema:name readcube_id
83 schema:value 4f65db6d9ad85f41de67f08b83065808e481d89f20590f9c48cc73df5b0027d0
84 rdf:type schema:PropertyValue
85 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biological Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
89 schema:name Genetics
90 rdf:type schema:DefinedTerm
91 sg:journal.1116758 schema:issn 1219-4956
92 1532-2807
93 schema:name Pathology & Oncology Research
94 rdf:type schema:Periodical
95 sg:person.01005322075.46 schema:affiliation https://www.grid.ac/institutes/grid.415954.8
96 schema:familyName Jin
97 schema:givenName Xuefei
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005322075.46
99 rdf:type schema:Person
100 sg:person.011537672645.21 schema:affiliation https://www.grid.ac/institutes/grid.415954.8
101 schema:familyName Wang
102 schema:givenName Kaichen
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537672645.21
104 rdf:type schema:Person
105 sg:person.07633050634.40 schema:affiliation https://www.grid.ac/institutes/grid.415954.8
106 schema:familyName Tan
107 schema:givenName Jiufeng
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633050634.40
109 rdf:type schema:Person
110 sg:pub.10.1007/bf03401728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083231572
111 https://doi.org/10.1007/bf03401728
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11033-011-1026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022353508
114 https://doi.org/10.1007/s11033-011-1026-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nbt.2158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009175143
117 https://doi.org/10.1038/nbt.2158
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nm.1880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045507585
120 https://doi.org/10.1038/nm.1880
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1471-2105-8-426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037731520
123 https://doi.org/10.1186/1471-2105-8-426
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/ijc.28134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026169459
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/jso.22066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041522148
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.bbapap.2013.01.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491890
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0022-5347(17)35000-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082558840
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1056/nejm198601163140301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023924449
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1071/srb10abs141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058211969
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.0900351106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050778792
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/bioinformatics/btg405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878496
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/nar/gkq973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025608399
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/nar/gkt1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023238985
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1111/j.1464-5491.2010.03097.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045244483
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/scitranslmed.3005211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037562713
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1158/0008-5472.can-13-0578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033565775
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1158/1078-0432.ccr-07-4495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020526294
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1158/1538-7445.am2013-1974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063248728
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1158/1538-7445.am2013-5130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063252155
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1158/2159-8290.cd-12-0460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009539298
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1200/jco.2004.07.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204177
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1210/mend.14.6.0488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064332009
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1371/journal.pone.0018640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039054263
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1371/journal.pone.0068162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024407492
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1371/journal.pone.0079231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042658854
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2217/epi.11.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005689442
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.415954.8 schema:alternateName China-Japan Friendship Hospital
174 schema:name Department of urology, China-Japan Union Hospital of Jilin University, 126 Xiantai ST, 130033, Changchun, Jilin Province, China
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...