Popularity prediction–based caching in content delivery networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-15

AUTHORS

Nesrine Ben Hassine, Pascale Minet, Dana Marinca, Dominique Barth

ABSTRACT

In content delivery networks (CDNs), caches are resources that must be allocated. For that purpose, videos’ popularity knowledge helps to make efficient decisions about which videos should be cached. Thus, we must be able to anticipate future needs in terms of requested videos. To do this, we rely on the requests history. This paper focuses on predicting the videos’ popularity: the daily number of requests. For that purpose, we propose a two-level prediction approach. At the first level, the experts compute the videos’ popularity, each expert using its own prediction method with its own parameters. At the second level, the forecasters select the best experts and build a prediction based on the predictions provided by these experts. The prediction accuracy is evaluated by a loss function as the discrepancy between the prediction value and the real number of requests. We use real traces extracted from YouTube to compare different prediction methods and determine the best parameter tuning for experts and forecasters. The goal is to find the best trade-off between complexity and accuracy of the prediction methods used. Finally, we apply these prediction methods to caching. Prediction methods are compared in terms of cache hit ratio and update ratio. The gain brought by this two-level prediction approach is compared with that obtained by a single prediction level. The results show that the choice of a two-level prediction approach is justified. More... »

PAGES

1-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12243-018-00700-8

DOI

http://dx.doi.org/10.1007/s12243-018-00700-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112158824


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben Hassine", 
        "givenName": "Nesrine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minet", 
        "givenName": "Pascale", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
          "id": "https://www.grid.ac/institutes/grid.12832.3a", 
          "name": [
            "DAVID, University of Versailles, Versailles, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinca", 
        "givenName": "Dana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
          "id": "https://www.grid.ac/institutes/grid.12832.3a", 
          "name": [
            "DAVID, University of Versailles, Versailles, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barth", 
        "givenName": "Dominique", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2733373.2806361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003939302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12275-0_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004169533", 
          "https://doi.org/10.1007/978-3-642-12275-0_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12275-0_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004169533", 
          "https://doi.org/10.1007/978-3-642-12275-0_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1963192.1963222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005745180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-010-0442-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006709105", 
          "https://doi.org/10.1007/s00521-010-0442-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1286(03)00334-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011241168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1286(03)00334-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011241168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1787234.1787254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013691597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2011.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020140487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2433396.2433443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021378706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3017992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023742510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1298306.1298309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024347853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0803685105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024658135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2433396.2433473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035272026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12243-016-0533-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035370039", 
          "https://doi.org/10.1007/s12243-016-0533-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12243-016-0533-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035370039", 
          "https://doi.org/10.1007/s12243-016-0533-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2008.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039018207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2007.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039614235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01510-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039935974", 
          "https://doi.org/10.1007/978-3-642-01510-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01510-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039935974", 
          "https://doi.org/10.1007/978-3-642-01510-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2007.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041689784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2566486.2567996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045751071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2964284.2964335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051655114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2006.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052286902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00205a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054980411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2014.2370942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061338421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2004.1297303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061387042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2009.2015983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061521978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2008.2011358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061715013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1218063.1217968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063153126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/sj.52.0078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063185080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/sj.92.0078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063185202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2017.2695439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084948469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pimrc.2015.7343641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094657570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ams.2008.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095506019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdcs.2007.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095530618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdcs.2007.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095530618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wimob.2016.7763215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095539157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-15", 
    "datePublishedReg": "2019-02-15", 
    "description": "In content delivery networks (CDNs), caches are resources that must be allocated. For that purpose, videos\u2019 popularity knowledge helps to make efficient decisions about which videos should be cached. Thus, we must be able to anticipate future needs in terms of requested videos. To do this, we rely on the requests history. This paper focuses on predicting the videos\u2019 popularity: the daily number of requests. For that purpose, we propose a two-level prediction approach. At the first level, the experts compute the videos\u2019 popularity, each expert using its own prediction method with its own parameters. At the second level, the forecasters select the best experts and build a prediction based on the predictions provided by these experts. The prediction accuracy is evaluated by a loss function as the discrepancy between the prediction value and the real number of requests. We use real traces extracted from YouTube to compare different prediction methods and determine the best parameter tuning for experts and forecasters. The goal is to find the best trade-off between complexity and accuracy of the prediction methods used. Finally, we apply these prediction methods to caching. Prediction methods are compared in terms of cache hit ratio and update ratio. The gain brought by this two-level prediction approach is compared with that obtained by a single prediction level. The results show that the choice of a two-level prediction approach is justified.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12243-018-00700-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120575", 
        "issn": [
          "0003-4347", 
          "1958-9395"
        ], 
        "name": "Annals of Telecommunications", 
        "type": "Periodical"
      }
    ], 
    "name": "Popularity prediction\u2013based caching in content delivery networks", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "268876b6b83bb8f8e489ca597e6a5293faa5e22dca028f3c2f34b0fcf28b8544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12243-018-00700-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112158824"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12243-018-00700-8", 
      "https://app.dimensions.ai/details/publication/pub.1112158824"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37550_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12243-018-00700-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12243-018-00700-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12243-018-00700-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12243-018-00700-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12243-018-00700-8'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      57 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12243-018-00700-8 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N2af671a50ab74adc94f9d92a2d6851f6
4 schema:citation sg:pub.10.1007/978-3-642-01510-6_9
5 sg:pub.10.1007/978-3-642-12275-0_19
6 sg:pub.10.1007/s00521-010-0442-0
7 sg:pub.10.1007/s12243-016-0533-8
8 https://doi.org/10.1016/j.dss.2006.10.004
9 https://doi.org/10.1016/j.dss.2008.05.001
10 https://doi.org/10.1016/j.ipl.2007.12.001
11 https://doi.org/10.1016/j.jss.2007.10.024
12 https://doi.org/10.1016/j.peva.2011.07.008
13 https://doi.org/10.1016/s1389-1286(03)00334-7
14 https://doi.org/10.1021/ac00205a007
15 https://doi.org/10.1073/pnas.0803685105
16 https://doi.org/10.1109/ams.2008.40
17 https://doi.org/10.1109/icdcs.2007.98
18 https://doi.org/10.1109/jstsp.2014.2370942
19 https://doi.org/10.1109/mc.2004.1297303
20 https://doi.org/10.1109/pimrc.2015.7343641
21 https://doi.org/10.1109/tbc.2009.2015983
22 https://doi.org/10.1109/tmm.2017.2695439
23 https://doi.org/10.1109/tnet.2008.2011358
24 https://doi.org/10.1109/wimob.2016.7763215
25 https://doi.org/10.1145/1218063.1217968
26 https://doi.org/10.1145/1298306.1298309
27 https://doi.org/10.1145/1787234.1787254
28 https://doi.org/10.1145/1963192.1963222
29 https://doi.org/10.1145/2433396.2433443
30 https://doi.org/10.1145/2433396.2433473
31 https://doi.org/10.1145/2566486.2567996
32 https://doi.org/10.1145/2733373.2806361
33 https://doi.org/10.1145/2964284.2964335
34 https://doi.org/10.1145/3017992
35 https://doi.org/10.1147/sj.52.0078
36 https://doi.org/10.1147/sj.92.0078
37 schema:datePublished 2019-02-15
38 schema:datePublishedReg 2019-02-15
39 schema:description In content delivery networks (CDNs), caches are resources that must be allocated. For that purpose, videos’ popularity knowledge helps to make efficient decisions about which videos should be cached. Thus, we must be able to anticipate future needs in terms of requested videos. To do this, we rely on the requests history. This paper focuses on predicting the videos’ popularity: the daily number of requests. For that purpose, we propose a two-level prediction approach. At the first level, the experts compute the videos’ popularity, each expert using its own prediction method with its own parameters. At the second level, the forecasters select the best experts and build a prediction based on the predictions provided by these experts. The prediction accuracy is evaluated by a loss function as the discrepancy between the prediction value and the real number of requests. We use real traces extracted from YouTube to compare different prediction methods and determine the best parameter tuning for experts and forecasters. The goal is to find the best trade-off between complexity and accuracy of the prediction methods used. Finally, we apply these prediction methods to caching. Prediction methods are compared in terms of cache hit ratio and update ratio. The gain brought by this two-level prediction approach is compared with that obtained by a single prediction level. The results show that the choice of a two-level prediction approach is justified.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1120575
44 schema:name Popularity prediction–based caching in content delivery networks
45 schema:pagination 1-14
46 schema:productId N29084d5302b84b3ead70319f24a9ac19
47 Nd3cb4780f6954ba28753804feb9a8ef0
48 Nfe49a6709bc6474b99cd0e51a780fd50
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158824
50 https://doi.org/10.1007/s12243-018-00700-8
51 schema:sdDatePublished 2019-04-11T09:06
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N27406377abaa45159f67e2896e7f1788
54 schema:url https://link.springer.com/10.1007%2Fs12243-018-00700-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N27406377abaa45159f67e2896e7f1788 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N29084d5302b84b3ead70319f24a9ac19 schema:name dimensions_id
61 schema:value pub.1112158824
62 rdf:type schema:PropertyValue
63 N2af671a50ab74adc94f9d92a2d6851f6 rdf:first N7c312bce4fd144888d418b99b8ddcb0e
64 rdf:rest N73d2f37740af4b0e8557950d705dbade
65 N73d2f37740af4b0e8557950d705dbade rdf:first Nd8e74449bd604ff1b57e695a8b2ee96d
66 rdf:rest Na8e041ce9f2b4499aceab7441e91507c
67 N766eebc9863a47e88328bb8ad5a433c6 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
68 schema:familyName Marinca
69 schema:givenName Dana
70 rdf:type schema:Person
71 N7c312bce4fd144888d418b99b8ddcb0e schema:affiliation https://www.grid.ac/institutes/grid.5328.c
72 schema:familyName Ben Hassine
73 schema:givenName Nesrine
74 rdf:type schema:Person
75 N861be69588c643ecb30240d0cbf20274 rdf:first Naad33f12a55e4e4d88a043a85855e5c1
76 rdf:rest rdf:nil
77 Na8e041ce9f2b4499aceab7441e91507c rdf:first N766eebc9863a47e88328bb8ad5a433c6
78 rdf:rest N861be69588c643ecb30240d0cbf20274
79 Naad33f12a55e4e4d88a043a85855e5c1 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
80 schema:familyName Barth
81 schema:givenName Dominique
82 rdf:type schema:Person
83 Nd3cb4780f6954ba28753804feb9a8ef0 schema:name readcube_id
84 schema:value 268876b6b83bb8f8e489ca597e6a5293faa5e22dca028f3c2f34b0fcf28b8544
85 rdf:type schema:PropertyValue
86 Nd8e74449bd604ff1b57e695a8b2ee96d schema:affiliation https://www.grid.ac/institutes/grid.5328.c
87 schema:familyName Minet
88 schema:givenName Pascale
89 rdf:type schema:Person
90 Nfe49a6709bc6474b99cd0e51a780fd50 schema:name doi
91 schema:value 10.1007/s12243-018-00700-8
92 rdf:type schema:PropertyValue
93 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
94 schema:name Economics
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
97 schema:name Applied Economics
98 rdf:type schema:DefinedTerm
99 sg:journal.1120575 schema:issn 0003-4347
100 1958-9395
101 schema:name Annals of Telecommunications
102 rdf:type schema:Periodical
103 sg:pub.10.1007/978-3-642-01510-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039935974
104 https://doi.org/10.1007/978-3-642-01510-6_9
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-642-12275-0_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004169533
107 https://doi.org/10.1007/978-3-642-12275-0_19
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00521-010-0442-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006709105
110 https://doi.org/10.1007/s00521-010-0442-0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12243-016-0533-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035370039
113 https://doi.org/10.1007/s12243-016-0533-8
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.dss.2006.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052286902
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.dss.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039018207
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ipl.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041689784
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jss.2007.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039614235
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.peva.2011.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020140487
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s1389-1286(03)00334-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011241168
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/ac00205a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054980411
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.0803685105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024658135
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/ams.2008.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095506019
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icdcs.2007.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095530618
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/jstsp.2014.2370942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338421
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/mc.2004.1297303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387042
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/pimrc.2015.7343641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094657570
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tbc.2009.2015983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061521978
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tmm.2017.2695439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084948469
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tnet.2008.2011358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715013
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/wimob.2016.7763215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095539157
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/1218063.1217968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063153126
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/1298306.1298309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024347853
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/1787234.1787254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013691597
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/1963192.1963222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005745180
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/2433396.2433443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021378706
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/2433396.2433473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035272026
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/2566486.2567996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045751071
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/2733373.2806361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003939302
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/2964284.2964335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051655114
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/3017992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023742510
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1147/sj.52.0078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063185080
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1147/sj.92.0078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063185202
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.12832.3a schema:alternateName Versailles Saint-Quentin-en-Yvelines University
174 schema:name DAVID, University of Versailles, Versailles, France
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
177 schema:name Inria, Paris, France
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...