Discrete Optimization Design of Tailor-Welded Blanks (TWBs) Thin-Walled Structures Under Dynamic Crashing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yisong Chen, Fengxiang Xu, Suo Zhang, Kunying Wu, Zhinan Dong

ABSTRACT

Tailor-welded blanks (TWBs) thin-walled structures have been widely applied in field of automotive and construction due to their significant advantages in saving weight and improving crashworthiness. To further understand and improve crashing performance of TWB structures, this paper conducts parametric analysis and optimization design on TWB thin-walled tubes. Firstly, the numerical model of dynamic crashing event of different TWB tubes is derived from physical experiments. The parametric analysis results show that the material and thickness combinations have significant effects on the crashing performance. The energy-absorbed characteristics and deformed modes of TWBs are superior to those of tubes with uniform thickness. Then, two optimization cases of TWB tubes are presented through analysis of mean (ANOM) and updating orthogonal array, in which the thickness property and material types are considered as design variables. The results demonstrated that the performances of the optimized structure are much better than those of the initial counterpart. More... »

PAGES

265-275

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12239-019-0026-7

DOI

http://dx.doi.org/10.1007/s12239-019-0026-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113098207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Automobile, Chang\u2019an University, 710064, Xi\u2019an, China", 
            "Key Laboratory of Automobile Transportation Safety Techniques of Ministry of Transport, Chang\u2019an University, 710064, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yisong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.162110.5", 
          "name": [
            "Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, 430070, Wuhan, China", 
            "Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Fengxiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.162110.5", 
          "name": [
            "Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, 430070, Wuhan, China", 
            "Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Suo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.162110.5", 
          "name": [
            "Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, 430070, Wuhan, China", 
            "Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Kunying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.162110.5", 
          "name": [
            "Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, 430070, Wuhan, China", 
            "Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Zhinan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000019562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.03.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000484704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-011-0683-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004245569", 
          "https://doi.org/10.1007/s00158-011-0683-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-011-0683-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004245569", 
          "https://doi.org/10.1007/s00158-011-0683-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(02)00162-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004247455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2012.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006410879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2007.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006752044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0305215x.2015.1017350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007294471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2013.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008830609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2014.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010121395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.06.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011170484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-001-0259-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015044101", 
          "https://doi.org/10.1007/s11661-001-0259-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-001-0259-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015044101", 
          "https://doi.org/10.1007/s11661-001-0259-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2013.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016107879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-874x(03)00095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017269511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-874x(03)00095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017269511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2007.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018921614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.suscom.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019458682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2013.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022951626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2013.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022983102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2009.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023546797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2015.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024328923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2015.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024359696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2013.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025354969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11340-015-9994-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029829494", 
          "https://doi.org/10.1007/s11340-015-9994-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13588265.2014.893788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031276861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2013.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032991418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-015-1358-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033562771", 
          "https://doi.org/10.1007/s00158-015-1358-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-015-1358-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033562771", 
          "https://doi.org/10.1007/s00158-015-1358-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1513-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037658207", 
          "https://doi.org/10.1007/s00158-016-1513-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1513-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037658207", 
          "https://doi.org/10.1007/s00158-016-1513-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-013-0932-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039060194", 
          "https://doi.org/10.1007/s00158-013-0932-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-013-0932-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039060194", 
          "https://doi.org/10.1007/s00158-013-0932-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0305215x.2015.1115645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039268774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2014.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040315544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2016.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040344217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2012.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041269516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2012.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049727405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.04.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050757326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051198601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1857936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062075530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2034518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2034518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2034518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3167137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062105059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4028704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062154015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406215627181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406215627181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/03093247jsa445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/03093247jsa445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/03093247jsa445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/095440706x72772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064451905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/095440706x72772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064451905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544070jauto763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064452478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544070jauto763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064452478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijvd.2016.080590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067502596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.344.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072072084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2018.05.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104330054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2018.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105645834"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Tailor-welded blanks (TWBs) thin-walled structures have been widely applied in field of automotive and construction due to their significant advantages in saving weight and improving crashworthiness. To further understand and improve crashing performance of TWB structures, this paper conducts parametric analysis and optimization design on TWB thin-walled tubes. Firstly, the numerical model of dynamic crashing event of different TWB tubes is derived from physical experiments. The parametric analysis results show that the material and thickness combinations have significant effects on the crashing performance. The energy-absorbed characteristics and deformed modes of TWBs are superior to those of tubes with uniform thickness. Then, two optimization cases of TWB tubes are presented through analysis of mean (ANOM) and updating orthogonal array, in which the thickness property and material types are considered as design variables. The results demonstrated that the performances of the optimized structure are much better than those of the initial counterpart.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12239-019-0026-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135891", 
        "issn": [
          "1229-9138", 
          "1976-3832"
        ], 
        "name": "International Journal of Automotive Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Discrete Optimization Design of Tailor-Welded Blanks (TWBs) Thin-Walled Structures Under Dynamic Crashing", 
    "pagination": "265-275", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "634fd7ba025e8f9dfdd13c754625ee1c36aa9b0c87e03746b405d01034cf580a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12239-019-0026-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113098207"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12239-019-0026-7", 
      "https://app.dimensions.ai/details/publication/pub.1113098207"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12239-019-0026-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12239-019-0026-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12239-019-0026-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12239-019-0026-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12239-019-0026-7'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12239-019-0026-7 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N50f86e7d7bcc42cfb28cd59781150856
4 schema:citation sg:pub.10.1007/s00158-011-0683-2
5 sg:pub.10.1007/s00158-013-0932-7
6 sg:pub.10.1007/s00158-015-1358-1
7 sg:pub.10.1007/s00158-016-1513-3
8 sg:pub.10.1007/s11340-015-9994-3
9 sg:pub.10.1007/s11661-001-0259-7
10 https://doi.org/10.1016/j.advengsoft.2016.02.003
11 https://doi.org/10.1016/j.compstruc.2009.07.008
12 https://doi.org/10.1016/j.engstruct.2018.05.094
13 https://doi.org/10.1016/j.eswa.2011.04.220
14 https://doi.org/10.1016/j.finel.2012.06.004
15 https://doi.org/10.1016/j.ijimpeng.2007.05.003
16 https://doi.org/10.1016/j.ijimpeng.2012.10.012
17 https://doi.org/10.1016/j.ijimpeng.2013.06.011
18 https://doi.org/10.1016/j.ijimpeng.2013.10.004
19 https://doi.org/10.1016/j.ijimpeng.2013.12.002
20 https://doi.org/10.1016/j.ijmecsci.2014.11.022
21 https://doi.org/10.1016/j.ijmecsci.2015.04.013
22 https://doi.org/10.1016/j.jmatprotec.2013.08.015
23 https://doi.org/10.1016/j.jmatprotec.2013.11.018
24 https://doi.org/10.1016/j.jmatprotec.2014.10.022
25 https://doi.org/10.1016/j.matdes.2011.03.060
26 https://doi.org/10.1016/j.matdes.2013.06.067
27 https://doi.org/10.1016/j.suscom.2014.09.003
28 https://doi.org/10.1016/j.tws.2007.01.013
29 https://doi.org/10.1016/j.tws.2012.02.007
30 https://doi.org/10.1016/j.tws.2013.03.014
31 https://doi.org/10.1016/j.tws.2013.08.021
32 https://doi.org/10.1016/j.tws.2014.07.004
33 https://doi.org/10.1016/j.tws.2015.09.020
34 https://doi.org/10.1016/j.tws.2018.07.007
35 https://doi.org/10.1016/s0168-874x(03)00095-7
36 https://doi.org/10.1016/s0924-0136(02)00162-0
37 https://doi.org/10.1080/0305215x.2015.1017350
38 https://doi.org/10.1080/0305215x.2015.1115645
39 https://doi.org/10.1080/13588265.2014.893788
40 https://doi.org/10.1115/1.1857936
41 https://doi.org/10.1115/1.2034518
42 https://doi.org/10.1115/1.3167137
43 https://doi.org/10.1115/1.4028704
44 https://doi.org/10.1177/0954406215627181
45 https://doi.org/10.1243/03093247jsa445
46 https://doi.org/10.1243/095440706x72772
47 https://doi.org/10.1243/09544070jauto763
48 https://doi.org/10.1504/ijvd.2016.080590
49 https://doi.org/10.4028/www.scientific.net/kem.344.373
50 schema:datePublished 2019-04
51 schema:datePublishedReg 2019-04-01
52 schema:description Tailor-welded blanks (TWBs) thin-walled structures have been widely applied in field of automotive and construction due to their significant advantages in saving weight and improving crashworthiness. To further understand and improve crashing performance of TWB structures, this paper conducts parametric analysis and optimization design on TWB thin-walled tubes. Firstly, the numerical model of dynamic crashing event of different TWB tubes is derived from physical experiments. The parametric analysis results show that the material and thickness combinations have significant effects on the crashing performance. The energy-absorbed characteristics and deformed modes of TWBs are superior to those of tubes with uniform thickness. Then, two optimization cases of TWB tubes are presented through analysis of mean (ANOM) and updating orthogonal array, in which the thickness property and material types are considered as design variables. The results demonstrated that the performances of the optimized structure are much better than those of the initial counterpart.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N134053ae6a7645b291e3d09f2198a431
57 N5f45ad355cd240898b21024728febc9c
58 sg:journal.1135891
59 schema:name Discrete Optimization Design of Tailor-Welded Blanks (TWBs) Thin-Walled Structures Under Dynamic Crashing
60 schema:pagination 265-275
61 schema:productId N441a4294f09a47fca9518841d4671e60
62 N6583255416b446b181e907d56a8d7892
63 Naf3a18bb355c42178fb861d62fabdd3a
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113098207
65 https://doi.org/10.1007/s12239-019-0026-7
66 schema:sdDatePublished 2019-04-11T13:25
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N91feaee77fb34146a3101c943096a320
69 schema:url https://link.springer.com/10.1007%2Fs12239-019-0026-7
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N01858315730741c1bc6efae8301e071f schema:affiliation https://www.grid.ac/institutes/grid.162110.5
74 schema:familyName Xu
75 schema:givenName Fengxiang
76 rdf:type schema:Person
77 N04b0f735ba54481dad679713a7d5a855 rdf:first N769077b7cee64130b507b81cbbbdb73a
78 rdf:rest rdf:nil
79 N134053ae6a7645b291e3d09f2198a431 schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 N441a4294f09a47fca9518841d4671e60 schema:name readcube_id
82 schema:value 634fd7ba025e8f9dfdd13c754625ee1c36aa9b0c87e03746b405d01034cf580a
83 rdf:type schema:PropertyValue
84 N50f86e7d7bcc42cfb28cd59781150856 rdf:first Nd4017e94043a468990f8eb34e6e55d9c
85 rdf:rest Nbd96a5e7dc0f405983e7e2c0bdbc04b7
86 N54025b7767f5405296e31a05421c3dae rdf:first N95286380c3d94c4da6564ad71ab15ebb
87 rdf:rest N04b0f735ba54481dad679713a7d5a855
88 N5f45ad355cd240898b21024728febc9c schema:volumeNumber 20
89 rdf:type schema:PublicationVolume
90 N6583255416b446b181e907d56a8d7892 schema:name dimensions_id
91 schema:value pub.1113098207
92 rdf:type schema:PropertyValue
93 N769077b7cee64130b507b81cbbbdb73a schema:affiliation https://www.grid.ac/institutes/grid.162110.5
94 schema:familyName Dong
95 schema:givenName Zhinan
96 rdf:type schema:Person
97 N91feaee77fb34146a3101c943096a320 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N95286380c3d94c4da6564ad71ab15ebb schema:affiliation https://www.grid.ac/institutes/grid.162110.5
100 schema:familyName Wu
101 schema:givenName Kunying
102 rdf:type schema:Person
103 Na77cad3f76ed4d8e82e6a4116bb0fd00 schema:affiliation https://www.grid.ac/institutes/grid.162110.5
104 schema:familyName Zhang
105 schema:givenName Suo
106 rdf:type schema:Person
107 Naf3a18bb355c42178fb861d62fabdd3a schema:name doi
108 schema:value 10.1007/s12239-019-0026-7
109 rdf:type schema:PropertyValue
110 Nbbc02049d5d64bf99f0b42f771ebfd6a rdf:first Na77cad3f76ed4d8e82e6a4116bb0fd00
111 rdf:rest N54025b7767f5405296e31a05421c3dae
112 Nbd96a5e7dc0f405983e7e2c0bdbc04b7 rdf:first N01858315730741c1bc6efae8301e071f
113 rdf:rest Nbbc02049d5d64bf99f0b42f771ebfd6a
114 Nd4017e94043a468990f8eb34e6e55d9c schema:affiliation https://www.grid.ac/institutes/grid.440661.1
115 schema:familyName Chen
116 schema:givenName Yisong
117 rdf:type schema:Person
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
122 schema:name Civil Engineering
123 rdf:type schema:DefinedTerm
124 sg:journal.1135891 schema:issn 1229-9138
125 1976-3832
126 schema:name International Journal of Automotive Technology
127 rdf:type schema:Periodical
128 sg:pub.10.1007/s00158-011-0683-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004245569
129 https://doi.org/10.1007/s00158-011-0683-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00158-013-0932-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039060194
132 https://doi.org/10.1007/s00158-013-0932-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00158-015-1358-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033562771
135 https://doi.org/10.1007/s00158-015-1358-1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00158-016-1513-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037658207
138 https://doi.org/10.1007/s00158-016-1513-3
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11340-015-9994-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029829494
141 https://doi.org/10.1007/s11340-015-9994-3
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11661-001-0259-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015044101
144 https://doi.org/10.1007/s11661-001-0259-7
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.advengsoft.2016.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040344217
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.compstruc.2009.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023546797
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.engstruct.2018.05.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104330054
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.eswa.2011.04.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050757326
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.finel.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041269516
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ijimpeng.2007.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006752044
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ijimpeng.2012.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006410879
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ijimpeng.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022983102
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ijimpeng.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000019562
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ijimpeng.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016107879
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijmecsci.2014.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051198601
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijmecsci.2015.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024328923
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jmatprotec.2013.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032991418
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jmatprotec.2013.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008830609
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jmatprotec.2014.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040315544
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.matdes.2011.03.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000484704
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.matdes.2013.06.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011170484
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.suscom.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019458682
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.tws.2007.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018921614
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tws.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049727405
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.tws.2013.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025354969
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.tws.2013.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022951626
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.tws.2014.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010121395
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.tws.2015.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024359696
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.tws.2018.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105645834
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0168-874x(03)00095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017269511
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0924-0136(02)00162-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004247455
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/0305215x.2015.1017350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007294471
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/0305215x.2015.1115645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039268774
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/13588265.2014.893788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031276861
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1115/1.1857936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075530
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1115/1.2034518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076615
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1115/1.3167137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062105059
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1115/1.4028704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062154015
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1177/0954406215627181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063885267
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1243/03093247jsa445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064446222
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1243/095440706x72772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064451905
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1243/09544070jauto763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064452478
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1504/ijvd.2016.080590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067502596
223 rdf:type schema:CreativeWork
224 https://doi.org/10.4028/www.scientific.net/kem.344.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072072084
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.162110.5 schema:alternateName Wuhan University of Technology
227 schema:name Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, 430070, Wuhan, China
228 Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, 430070, Wuhan, China
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.440661.1 schema:alternateName Chang'an University
231 schema:name Key Laboratory of Automobile Transportation Safety Techniques of Ministry of Transport, Chang’an University, 710064, Xi’an, China
232 School of Automobile, Chang’an University, 710064, Xi’an, China
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...