Model-based fault detection and isolation in automotive yaw moment control system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Seung-Han You, Young Man Cho, Jin-Oh Hahn

ABSTRACT

This paper presents a model-based fault detection and isolation technique for automotive yaw moment control system. For this purpose, a novel fault detection and isolation algorithm for a class of actuator-plant systems is proposed. Compared with the existing fault detection and isolation techniques that can only isolate a target fault or require multiple observers to isolate multiple faults, a unique strength of the proposed algorithm is its ability to isolate faults at the component level solely based on the residuals generated by a single observer. The validity of the proposed algorithm, applied to automotive yaw moment control system, is investigated via a simulation study based on a realistic vehicle dynamics model. The results suggest that the proposed algorithm can isolate the component subject to fault while effectively handling two perennial nuisances: sensitivity to disturbances and false alarms due to uncertainties. More... »

PAGES

405-416

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12239-017-0041-5

DOI

http://dx.doi.org/10.1007/s12239-017-0041-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084034735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea University of Technology and Education", 
          "id": "https://www.grid.ac/institutes/grid.440955.9", 
          "name": [
            "School of Mechanical Engineering, Korea University of Technology and Education, 31253, Chungnam, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "You", 
        "givenName": "Seung-Han", 
        "id": "sg:person.011531701014.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531701014.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Solid (United States)", 
          "id": "https://www.grid.ac/institutes/grid.481733.a", 
          "name": [
            "SOLiD, Inc., 617 N. Mary Avenue, 94085, Sunnyvale, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Young Man", 
        "id": "sg:person.012176153337.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176153337.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Mechanical Engineering, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hahn", 
        "givenName": "Jin-Oh", 
        "id": "sg:person.01114153343.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114153343.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004219197", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004219197", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423110701882330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004319477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2013.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011557609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423119608969311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012057978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423119708969339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014232373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423119108968983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017342339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423110903377360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423111003602384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021755943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2005.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024367239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2005.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024367239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2004.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026482424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1076/vesd.39.2.99.14156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051176764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02990438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052293672", 
          "https://doi.org/10.1007/bf02990438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3516.789681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/87.998016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061242053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.53535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.566664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1987.1104530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061474738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2006.890287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2012.2198886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061573303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2015.2417501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061627232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2015.2419013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061627243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2011.2172822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061821037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2013.2279719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061821944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2805402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062083414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954407011404493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954407011404493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954407011404506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954407011404506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544070jauto1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064451949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544070jauto1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064451949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijvas.2010.035792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067501214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijvd.2008.022575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067502154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/2008-01-0596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072431701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/2000-01-1635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096553076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/980235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099386415"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "This paper presents a model-based fault detection and isolation technique for automotive yaw moment control system. For this purpose, a novel fault detection and isolation algorithm for a class of actuator-plant systems is proposed. Compared with the existing fault detection and isolation techniques that can only isolate a target fault or require multiple observers to isolate multiple faults, a unique strength of the proposed algorithm is its ability to isolate faults at the component level solely based on the residuals generated by a single observer. The validity of the proposed algorithm, applied to automotive yaw moment control system, is investigated via a simulation study based on a realistic vehicle dynamics model. The results suggest that the proposed algorithm can isolate the component subject to fault while effectively handling two perennial nuisances: sensitivity to disturbances and false alarms due to uncertainties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12239-017-0041-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135891", 
        "issn": [
          "1229-9138", 
          "1976-3832"
        ], 
        "name": "International Journal of Automotive Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Model-based fault detection and isolation in automotive yaw moment control system", 
    "pagination": "405-416", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "302f3e3136c8acd6bdb98a2f483d160fa4287396bff7360b593209fcb8d80b37"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12239-017-0041-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084034735"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12239-017-0041-5", 
      "https://app.dimensions.ai/details/publication/pub.1084034735"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12239-017-0041-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12239-017-0041-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12239-017-0041-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12239-017-0041-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12239-017-0041-5'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12239-017-0041-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N62239dada70549adaf395715db3e1cee
4 schema:citation sg:pub.10.1007/bf02990438
5 https://app.dimensions.ai/details/publication/pub.1004219197
6 https://doi.org/10.1016/j.conengprac.2004.06.003
7 https://doi.org/10.1016/j.conengprac.2005.06.002
8 https://doi.org/10.1016/j.conengprac.2013.10.008
9 https://doi.org/10.1076/vesd.39.2.99.14156
10 https://doi.org/10.1080/00423110701882330
11 https://doi.org/10.1080/00423110903377360
12 https://doi.org/10.1080/00423111003602384
13 https://doi.org/10.1080/00423119108968983
14 https://doi.org/10.1080/00423119608969311
15 https://doi.org/10.1080/00423119708969339
16 https://doi.org/10.1109/3516.789681
17 https://doi.org/10.1109/87.998016
18 https://doi.org/10.1109/9.53535
19 https://doi.org/10.1109/9.566664
20 https://doi.org/10.1109/tac.1987.1104530
21 https://doi.org/10.1109/tcst.2006.890287
22 https://doi.org/10.1109/tcst.2012.2198886
23 https://doi.org/10.1109/tie.2015.2417501
24 https://doi.org/10.1109/tie.2015.2419013
25 https://doi.org/10.1109/tvt.2011.2172822
26 https://doi.org/10.1109/tvt.2013.2279719
27 https://doi.org/10.1115/1.2805402
28 https://doi.org/10.1177/0954407011404493
29 https://doi.org/10.1177/0954407011404506
30 https://doi.org/10.1243/09544070jauto1032
31 https://doi.org/10.1504/ijvas.2010.035792
32 https://doi.org/10.1504/ijvd.2008.022575
33 https://doi.org/10.4271/2000-01-1635
34 https://doi.org/10.4271/2008-01-0596
35 https://doi.org/10.4271/980235
36 schema:datePublished 2017-06
37 schema:datePublishedReg 2017-06-01
38 schema:description This paper presents a model-based fault detection and isolation technique for automotive yaw moment control system. For this purpose, a novel fault detection and isolation algorithm for a class of actuator-plant systems is proposed. Compared with the existing fault detection and isolation techniques that can only isolate a target fault or require multiple observers to isolate multiple faults, a unique strength of the proposed algorithm is its ability to isolate faults at the component level solely based on the residuals generated by a single observer. The validity of the proposed algorithm, applied to automotive yaw moment control system, is investigated via a simulation study based on a realistic vehicle dynamics model. The results suggest that the proposed algorithm can isolate the component subject to fault while effectively handling two perennial nuisances: sensitivity to disturbances and false alarms due to uncertainties.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N05acf447b1d94f89b37f19f5263de1d9
43 N181183a1816547e48eb11968f63abad4
44 sg:journal.1135891
45 schema:name Model-based fault detection and isolation in automotive yaw moment control system
46 schema:pagination 405-416
47 schema:productId N2a216f3388b749c384bbc4e7352c8a58
48 N4123103b92a349539f2f17863239db3f
49 N614bd095d0f94aa491b5be597be413f2
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084034735
51 https://doi.org/10.1007/s12239-017-0041-5
52 schema:sdDatePublished 2019-04-11T09:31
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nc8666d13dd66480c91694cdcbea41bfd
55 schema:url https://link.springer.com/10.1007%2Fs12239-017-0041-5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N05acf447b1d94f89b37f19f5263de1d9 schema:volumeNumber 18
60 rdf:type schema:PublicationVolume
61 N181183a1816547e48eb11968f63abad4 schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 N1baa455e2ca2400ab41e5c64d7a4fbec rdf:first sg:person.012176153337.61
64 rdf:rest N8f7e8d5276a44ce895bc15515172a714
65 N2a216f3388b749c384bbc4e7352c8a58 schema:name readcube_id
66 schema:value 302f3e3136c8acd6bdb98a2f483d160fa4287396bff7360b593209fcb8d80b37
67 rdf:type schema:PropertyValue
68 N4123103b92a349539f2f17863239db3f schema:name dimensions_id
69 schema:value pub.1084034735
70 rdf:type schema:PropertyValue
71 N614bd095d0f94aa491b5be597be413f2 schema:name doi
72 schema:value 10.1007/s12239-017-0041-5
73 rdf:type schema:PropertyValue
74 N62239dada70549adaf395715db3e1cee rdf:first sg:person.011531701014.18
75 rdf:rest N1baa455e2ca2400ab41e5c64d7a4fbec
76 N8f7e8d5276a44ce895bc15515172a714 rdf:first sg:person.01114153343.52
77 rdf:rest rdf:nil
78 Nc8666d13dd66480c91694cdcbea41bfd schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1135891 schema:issn 1229-9138
87 1976-3832
88 schema:name International Journal of Automotive Technology
89 rdf:type schema:Periodical
90 sg:person.01114153343.52 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
91 schema:familyName Hahn
92 schema:givenName Jin-Oh
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114153343.52
94 rdf:type schema:Person
95 sg:person.011531701014.18 schema:affiliation https://www.grid.ac/institutes/grid.440955.9
96 schema:familyName You
97 schema:givenName Seung-Han
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531701014.18
99 rdf:type schema:Person
100 sg:person.012176153337.61 schema:affiliation https://www.grid.ac/institutes/grid.481733.a
101 schema:familyName Cho
102 schema:givenName Young Man
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176153337.61
104 rdf:type schema:Person
105 sg:pub.10.1007/bf02990438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052293672
106 https://doi.org/10.1007/bf02990438
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1004219197 schema:CreativeWork
109 https://doi.org/10.1016/j.conengprac.2004.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026482424
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.conengprac.2005.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024367239
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.conengprac.2013.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011557609
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1076/vesd.39.2.99.14156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051176764
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/00423110701882330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004319477
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/00423110903377360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020106811
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/00423111003602384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021755943
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/00423119108968983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017342339
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/00423119608969311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012057978
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/00423119708969339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014232373
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/3516.789681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160469
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/87.998016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242053
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/9.53535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245019
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/9.566664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245191
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tac.1987.1104530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061474738
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tcst.2006.890287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572413
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tcst.2012.2198886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061573303
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tie.2015.2417501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061627232
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tie.2015.2419013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061627243
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tvt.2011.2172822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061821037
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tvt.2013.2279719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061821944
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1115/1.2805402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062083414
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1177/0954407011404493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063885693
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1177/0954407011404506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063885694
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1243/09544070jauto1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064451949
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1504/ijvas.2010.035792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067501214
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1504/ijvd.2008.022575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067502154
162 rdf:type schema:CreativeWork
163 https://doi.org/10.4271/2000-01-1635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096553076
164 rdf:type schema:CreativeWork
165 https://doi.org/10.4271/2008-01-0596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072431701
166 rdf:type schema:CreativeWork
167 https://doi.org/10.4271/980235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099386415
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
170 schema:name Department of Mechanical Engineering, University of Maryland, 20742, College Park, MD, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.440955.9 schema:alternateName Korea University of Technology and Education
173 schema:name School of Mechanical Engineering, Korea University of Technology and Education, 31253, Chungnam, Korea
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.481733.a schema:alternateName Solid (United States)
176 schema:name SOLiD, Inc., 617 N. Mary Avenue, 94085, Sunnyvale, CA, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...