Higher Critical Points in an Elliptic Free Boundary Problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-27

AUTHORS

David Jerison, Kanishka Perera

ABSTRACT

We study higher critical points of the variational functional associated with a free boundary problem related to plasma confinement. Existence and regularity of minimizers in elliptic free boundary problems have already been studied extensively. But because the functionals are not smooth, standard variational methods cannot be used directly to prove the existence of higher critical points. Here we find a nontrivial critical point of mountain pass type and prove many of the same estimates known for minimizers, including Lipschitz continuity and nondegeneracy. We then show that the free boundary is smooth in dimension 2 and prove partial regularity in higher dimensions. More... »

PAGES

1258-1294

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12220-017-9862-8

DOI

http://dx.doi.org/10.1007/s12220-017-9862-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085614694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jerison", 
        "givenName": "David", 
        "id": "sg:person.01000133510.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000133510.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Florida Institute of Technology, 32901, Melbourne, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255966.b", 
          "name": [
            "Department of Mathematical Sciences, Florida Institute of Technology, 32901, Melbourne, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perera", 
        "givenName": "Kanishka", 
        "id": "sg:person.013647244673.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647244673.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00039-015-0335-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038629847", 
          "https://doi.org/10.1007/s00039-015-0335-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00004636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052825237", 
          "https://doi.org/10.1007/pl00004636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02921941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020010720", 
          "https://doi.org/10.1007/bf02921941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032833096", 
          "https://doi.org/10.1007/bf00281469"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-27", 
    "datePublishedReg": "2017-05-27", 
    "description": "We study higher critical points of the variational functional associated with a free boundary problem related to plasma confinement. Existence and regularity of minimizers in elliptic free boundary problems have already been studied extensively. But because the functionals are not smooth, standard variational methods cannot be used directly to prove the existence of higher critical points. Here we find a nontrivial critical point of mountain pass type and prove many of the same estimates known for minimizers, including Lipschitz continuity and nondegeneracy. We then show that the free boundary is smooth in dimension 2 and prove partial regularity in higher dimensions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12220-017-9862-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3123977", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3982195", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136350", 
        "issn": [
          "1050-6926", 
          "1559-002X"
        ], 
        "name": "The Journal of Geometric Analysis", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "free boundary problem", 
      "boundary problem", 
      "elliptic free boundary problem", 
      "critical point", 
      "standard variational method", 
      "nontrivial critical point", 
      "higher critical points", 
      "regularity of minimizers", 
      "mountain pass type", 
      "Lipschitz continuity", 
      "partial regularity", 
      "higher dimensions", 
      "variational functional", 
      "variational method", 
      "dimension 2", 
      "plasma confinement", 
      "free boundary", 
      "minimizers", 
      "same estimates", 
      "functionals", 
      "pass type", 
      "problem", 
      "regularity", 
      "nondegeneracy", 
      "existence", 
      "point", 
      "estimates", 
      "dimensions", 
      "boundaries", 
      "confinement", 
      "continuity", 
      "types", 
      "method"
    ], 
    "name": "Higher Critical Points in an Elliptic Free Boundary Problem", 
    "pagination": "1258-1294", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085614694"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12220-017-9862-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12220-017-9862-8", 
      "https://app.dimensions.ai/details/publication/pub.1085614694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_748.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12220-017-9862-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9862-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9862-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9862-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9862-8'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      61 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12220-017-9862-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Naba33c23ef494fa8a9fcf6d0cd5eb14c
4 schema:citation sg:pub.10.1007/bf00281469
5 sg:pub.10.1007/bf02921941
6 sg:pub.10.1007/pl00004636
7 sg:pub.10.1007/s00039-015-0335-6
8 schema:datePublished 2017-05-27
9 schema:datePublishedReg 2017-05-27
10 schema:description We study higher critical points of the variational functional associated with a free boundary problem related to plasma confinement. Existence and regularity of minimizers in elliptic free boundary problems have already been studied extensively. But because the functionals are not smooth, standard variational methods cannot be used directly to prove the existence of higher critical points. Here we find a nontrivial critical point of mountain pass type and prove many of the same estimates known for minimizers, including Lipschitz continuity and nondegeneracy. We then show that the free boundary is smooth in dimension 2 and prove partial regularity in higher dimensions.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N4e467c5cdc844ec3b31062ef831ea40b
14 Ndf4babec9a73448abbb737fa61a2e2f0
15 sg:journal.1136350
16 schema:keywords Lipschitz continuity
17 boundaries
18 boundary problem
19 confinement
20 continuity
21 critical point
22 dimension 2
23 dimensions
24 elliptic free boundary problem
25 estimates
26 existence
27 free boundary
28 free boundary problem
29 functionals
30 higher critical points
31 higher dimensions
32 method
33 minimizers
34 mountain pass type
35 nondegeneracy
36 nontrivial critical point
37 partial regularity
38 pass type
39 plasma confinement
40 point
41 problem
42 regularity
43 regularity of minimizers
44 same estimates
45 standard variational method
46 types
47 variational functional
48 variational method
49 schema:name Higher Critical Points in an Elliptic Free Boundary Problem
50 schema:pagination 1258-1294
51 schema:productId Nc8d66e3d3b8b4c269d50f18b6d45b1ad
52 Ncd7538787e5744a2af8993dc002fc04a
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085614694
54 https://doi.org/10.1007/s12220-017-9862-8
55 schema:sdDatePublished 2022-10-01T06:43
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nb3aeb5f751544775aa994821a5feaa8c
58 schema:url https://doi.org/10.1007/s12220-017-9862-8
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N4e467c5cdc844ec3b31062ef831ea40b schema:issueNumber 2
63 rdf:type schema:PublicationIssue
64 Naba33c23ef494fa8a9fcf6d0cd5eb14c rdf:first sg:person.01000133510.12
65 rdf:rest Ncdf9c7bc358b4836b635d551ef84c298
66 Nb3aeb5f751544775aa994821a5feaa8c schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nc8d66e3d3b8b4c269d50f18b6d45b1ad schema:name doi
69 schema:value 10.1007/s12220-017-9862-8
70 rdf:type schema:PropertyValue
71 Ncd7538787e5744a2af8993dc002fc04a schema:name dimensions_id
72 schema:value pub.1085614694
73 rdf:type schema:PropertyValue
74 Ncdf9c7bc358b4836b635d551ef84c298 rdf:first sg:person.013647244673.41
75 rdf:rest rdf:nil
76 Ndf4babec9a73448abbb737fa61a2e2f0 schema:volumeNumber 28
77 rdf:type schema:PublicationVolume
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 sg:grant.3123977 http://pending.schema.org/fundedItem sg:pub.10.1007/s12220-017-9862-8
85 rdf:type schema:MonetaryGrant
86 sg:grant.3982195 http://pending.schema.org/fundedItem sg:pub.10.1007/s12220-017-9862-8
87 rdf:type schema:MonetaryGrant
88 sg:journal.1136350 schema:issn 1050-6926
89 1559-002X
90 schema:name The Journal of Geometric Analysis
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.01000133510.12 schema:affiliation grid-institutes:grid.116068.8
94 schema:familyName Jerison
95 schema:givenName David
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000133510.12
97 rdf:type schema:Person
98 sg:person.013647244673.41 schema:affiliation grid-institutes:grid.255966.b
99 schema:familyName Perera
100 schema:givenName Kanishka
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647244673.41
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00281469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032833096
104 https://doi.org/10.1007/bf00281469
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02921941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020010720
107 https://doi.org/10.1007/bf02921941
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/pl00004636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052825237
110 https://doi.org/10.1007/pl00004636
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00039-015-0335-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038629847
113 https://doi.org/10.1007/s00039-015-0335-6
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.116068.8 schema:alternateName Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
116 schema:name Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
117 rdf:type schema:Organization
118 grid-institutes:grid.255966.b schema:alternateName Department of Mathematical Sciences, Florida Institute of Technology, 32901, Melbourne, FL, USA
119 schema:name Department of Mathematical Sciences, Florida Institute of Technology, 32901, Melbourne, FL, USA
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...