Rigidity Theorems for Complete Sasakian Manifolds with Constant Pseudo-Hermitian Scalar Curvature View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-15

AUTHORS

Yibin Ren, Hezi Lin, Yuxin Dong

ABSTRACT

The orthogonal decomposition of the Webster curvature provides us a way to characterize some canonical metrics on a pseudo-Hermitian manifold. We derive some subelliptic differential inequalities from the Weitzenböck formulas for the traceless pseudo-Hermitian Ricci tensor of Sasakian manifolds with constant pseudo-Hermitian scalar curvature and the Chern–Moser tensor of the Sasakian pseudo-Einstein manifolds, respectively. By means of either subelliptic estimates or maximum principle, some rigidity theorems are established to characterize Sasakian pseudo-Einstein manifolds among Sasakian manifolds with constant pseudo-Hermitian scalar curvature and Sasakian space forms among Sasakian pseudo-Einstein manifolds, respectively. More... »

PAGES

2788-2816

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12220-017-9783-6

DOI

http://dx.doi.org/10.1007/s12220-017-9783-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083827425


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, 321004, Jinhua, Zhejiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.453534.0", 
          "name": [
            "College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, 321004, Jinhua, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Yibin", 
        "id": "sg:person.010730131277.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730131277.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, 350108, Fuzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411503.2", 
          "name": [
            "School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, 350108, Fuzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Hezi", 
        "id": "sg:person.011570373030.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570373030.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences, Fudan University, 200433, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Mathematical Sciences, Fudan University, 200433, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Yuxin", 
        "id": "sg:person.013716033277.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716033277.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02392146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017175508", 
          "https://doi.org/10.1007/bf02392146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02921622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045431719", 
          "https://doi.org/10.1007/bf02921622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-006-0087-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031002931", 
          "https://doi.org/10.1007/s00220-006-0087-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010733718", 
          "https://doi.org/10.1007/bf01389045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-008-0479-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009921498", 
          "https://doi.org/10.1007/s00220-008-0479-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-009-0358-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032411107", 
          "https://doi.org/10.1007/s00208-009-0358-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1425-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035452330", 
          "https://doi.org/10.1007/s00220-005-1425-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4959-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007531096", 
          "https://doi.org/10.1007/978-0-8176-4959-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031487559", 
          "https://doi.org/10.1007/bf02392867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-010-0412-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030768609", 
          "https://doi.org/10.1007/s00229-010-0412-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-15", 
    "datePublishedReg": "2017-02-15", 
    "description": "The orthogonal decomposition of the Webster curvature provides us a way to characterize some canonical metrics on a pseudo-Hermitian manifold. We derive some subelliptic differential inequalities from the Weitzenb\u00f6ck formulas for the traceless pseudo-Hermitian Ricci tensor of Sasakian manifolds with constant pseudo-Hermitian scalar curvature and the Chern\u2013Moser tensor of the Sasakian pseudo-Einstein manifolds, respectively. By means of either subelliptic estimates or maximum principle, some rigidity theorems are established to characterize Sasakian pseudo-Einstein manifolds among Sasakian manifolds with constant pseudo-Hermitian scalar curvature and Sasakian space forms among Sasakian pseudo-Einstein manifolds, respectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12220-017-9783-6", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7175304", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8127382", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8117669", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136350", 
        "issn": [
          "1050-6926", 
          "1559-002X"
        ], 
        "name": "The Journal of Geometric Analysis", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "scalar curvature", 
      "rigidity theorem", 
      "Sasakian manifolds", 
      "pseudo-Hermitian manifolds", 
      "Sasakian space forms", 
      "maximum principle", 
      "differential inequalities", 
      "Ricci tensor", 
      "Weitzenb\u00f6ck formula", 
      "canonical metric", 
      "orthogonal decomposition", 
      "space form", 
      "manifold", 
      "subelliptic estimates", 
      "theorem", 
      "tensor", 
      "curvature", 
      "inequality", 
      "formula", 
      "estimates", 
      "decomposition", 
      "metrics", 
      "principles", 
      "means", 
      "form", 
      "way"
    ], 
    "name": "Rigidity Theorems for Complete Sasakian Manifolds with Constant Pseudo-Hermitian Scalar Curvature", 
    "pagination": "2788-2816", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083827425"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12220-017-9783-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12220-017-9783-6", 
      "https://app.dimensions.ai/details/publication/pub.1083827425"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12220-017-9783-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9783-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9783-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9783-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-017-9783-6'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      60 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12220-017-9783-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N61f09ee6c3a843a99cd932ce5588e9a5
4 schema:citation sg:pub.10.1007/978-0-8176-4959-3
5 sg:pub.10.1007/bf01389045
6 sg:pub.10.1007/bf02392146
7 sg:pub.10.1007/bf02392867
8 sg:pub.10.1007/bf02921622
9 sg:pub.10.1007/s00208-009-0358-0
10 sg:pub.10.1007/s00220-005-1425-3
11 sg:pub.10.1007/s00220-006-0087-0
12 sg:pub.10.1007/s00220-008-0479-4
13 sg:pub.10.1007/s00229-010-0412-y
14 schema:datePublished 2017-02-15
15 schema:datePublishedReg 2017-02-15
16 schema:description The orthogonal decomposition of the Webster curvature provides us a way to characterize some canonical metrics on a pseudo-Hermitian manifold. We derive some subelliptic differential inequalities from the Weitzenböck formulas for the traceless pseudo-Hermitian Ricci tensor of Sasakian manifolds with constant pseudo-Hermitian scalar curvature and the Chern–Moser tensor of the Sasakian pseudo-Einstein manifolds, respectively. By means of either subelliptic estimates or maximum principle, some rigidity theorems are established to characterize Sasakian pseudo-Einstein manifolds among Sasakian manifolds with constant pseudo-Hermitian scalar curvature and Sasakian space forms among Sasakian pseudo-Einstein manifolds, respectively.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N0c35d121fc694354b07c0275a3ff4d46
20 N332debe542914755b8b93d6a33540283
21 sg:journal.1136350
22 schema:keywords Ricci tensor
23 Sasakian manifolds
24 Sasakian space forms
25 Weitzenböck formula
26 canonical metric
27 curvature
28 decomposition
29 differential inequalities
30 estimates
31 form
32 formula
33 inequality
34 manifold
35 maximum principle
36 means
37 metrics
38 orthogonal decomposition
39 principles
40 pseudo-Hermitian manifolds
41 rigidity theorem
42 scalar curvature
43 space form
44 subelliptic estimates
45 tensor
46 theorem
47 way
48 schema:name Rigidity Theorems for Complete Sasakian Manifolds with Constant Pseudo-Hermitian Scalar Curvature
49 schema:pagination 2788-2816
50 schema:productId N4c6375eda80f4b3a96497ab8f5cc12ee
51 N87839e2e063745d3bde7c81ce4bd6c04
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083827425
53 https://doi.org/10.1007/s12220-017-9783-6
54 schema:sdDatePublished 2022-12-01T06:36
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N511d4aaaa7e74458bd2e3633875d0631
57 schema:url https://doi.org/10.1007/s12220-017-9783-6
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0c35d121fc694354b07c0275a3ff4d46 schema:volumeNumber 27
62 rdf:type schema:PublicationVolume
63 N29b9d04d8c79468284709d33635661e9 rdf:first sg:person.013716033277.41
64 rdf:rest rdf:nil
65 N332debe542914755b8b93d6a33540283 schema:issueNumber 4
66 rdf:type schema:PublicationIssue
67 N49ab33299f0842c9a7407da5a4aedeb6 rdf:first sg:person.011570373030.58
68 rdf:rest N29b9d04d8c79468284709d33635661e9
69 N4c6375eda80f4b3a96497ab8f5cc12ee schema:name doi
70 schema:value 10.1007/s12220-017-9783-6
71 rdf:type schema:PropertyValue
72 N511d4aaaa7e74458bd2e3633875d0631 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N61f09ee6c3a843a99cd932ce5588e9a5 rdf:first sg:person.010730131277.43
75 rdf:rest N49ab33299f0842c9a7407da5a4aedeb6
76 N87839e2e063745d3bde7c81ce4bd6c04 schema:name dimensions_id
77 schema:value pub.1083827425
78 rdf:type schema:PropertyValue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:grant.7175304 http://pending.schema.org/fundedItem sg:pub.10.1007/s12220-017-9783-6
86 rdf:type schema:MonetaryGrant
87 sg:grant.8117669 http://pending.schema.org/fundedItem sg:pub.10.1007/s12220-017-9783-6
88 rdf:type schema:MonetaryGrant
89 sg:grant.8127382 http://pending.schema.org/fundedItem sg:pub.10.1007/s12220-017-9783-6
90 rdf:type schema:MonetaryGrant
91 sg:journal.1136350 schema:issn 1050-6926
92 1559-002X
93 schema:name The Journal of Geometric Analysis
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.010730131277.43 schema:affiliation grid-institutes:grid.453534.0
97 schema:familyName Ren
98 schema:givenName Yibin
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730131277.43
100 rdf:type schema:Person
101 sg:person.011570373030.58 schema:affiliation grid-institutes:grid.411503.2
102 schema:familyName Lin
103 schema:givenName Hezi
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570373030.58
105 rdf:type schema:Person
106 sg:person.013716033277.41 schema:affiliation grid-institutes:grid.8547.e
107 schema:familyName Dong
108 schema:givenName Yuxin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716033277.41
110 rdf:type schema:Person
111 sg:pub.10.1007/978-0-8176-4959-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007531096
112 https://doi.org/10.1007/978-0-8176-4959-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01389045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010733718
115 https://doi.org/10.1007/bf01389045
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02392146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017175508
118 https://doi.org/10.1007/bf02392146
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02392867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031487559
121 https://doi.org/10.1007/bf02392867
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf02921622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045431719
124 https://doi.org/10.1007/bf02921622
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00208-009-0358-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032411107
127 https://doi.org/10.1007/s00208-009-0358-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00220-005-1425-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035452330
130 https://doi.org/10.1007/s00220-005-1425-3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00220-006-0087-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031002931
133 https://doi.org/10.1007/s00220-006-0087-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00220-008-0479-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009921498
136 https://doi.org/10.1007/s00220-008-0479-4
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00229-010-0412-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030768609
139 https://doi.org/10.1007/s00229-010-0412-y
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.411503.2 schema:alternateName School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, 350108, Fuzhou, People’s Republic of China
142 schema:name School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, 350108, Fuzhou, People’s Republic of China
143 rdf:type schema:Organization
144 grid-institutes:grid.453534.0 schema:alternateName College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, 321004, Jinhua, Zhejiang, People’s Republic of China
145 schema:name College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, 321004, Jinhua, Zhejiang, People’s Republic of China
146 rdf:type schema:Organization
147 grid-institutes:grid.8547.e schema:alternateName School of Mathematical Sciences, Fudan University, 200433, Shanghai, People’s Republic of China
148 schema:name School of Mathematical Sciences, Fudan University, 200433, Shanghai, People’s Republic of China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...