Explicit Hodge-Type Decomposition on Projective Complete Intersections View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Gennadi M. Henkin, Peter L. Polyakov

ABSTRACT

We construct an explicit homotopy formula for the ∂¯-complex on a reduced complete intersection subvariety V⊂CPn. This formula can be interpreted as an explicit Hodge-type decomposition for residual currents on V. As a first application of this formula we obtained the explicit Hodge decomposition on arbitrary Riemann surfaces.

PAGES

672-713

References to SciGraph publications

  • 1970-01. Complexe dualisant et théorèmes de dualité en géométrie analytique complexe in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 1942-12. Sopra una dimostrazione di R. Fueter per un teorema di Hartogs in COMMENTARII MATHEMATICI HELVETICI
  • 2008-04. Weighted integral formulas on manifolds in ARKIV FÖR MATEMATIK
  • 2012-12. Inversion formulas for complex radon transform on projective varieties and boundary value problems for systems of linear PDEs in PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS
  • 1971-12. Residues and principal values on complex spaces in MATHEMATISCHE ANNALEN
  • 2012-12. Koppelman formulas on flag manifolds and harmonic forms in MATHEMATISCHE ZEITSCHRIFT
  • 1970-03. Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten in MATHEMATISCHE ANNALEN
  • 1941-12. Über einen Hartogs'schen Satz in der Theorie der analytischen Funktionen vonn komplexen Variablen in COMMENTARII MATHEMATICI HELVETICI
  • 2012-11. A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas in INVENTIONES MATHEMATICAE
  • 1935-12. L'intégrale de Cauchy et les fonctions de plusieurs variables in MATHEMATISCHE ANNALEN
  • 1953-12. Über die wesentlichen Singularitäten analytischer Mengen in MATHEMATISCHE ANNALEN
  • 2011-07. On the Reconstruction of Conductivity of a Bordered Two-dimensional Surface in ℝ3 from Electrical Current Measurements on Its Boundary in THE JOURNAL OF GEOMETRIC ANALYSIS
  • 1978. Les Courants Résiduels Associés à une Forme Méromorphe in NONE
  • 1977. Algebraic Geometry in NONE
  • 2012-10. Residual -cohomology and the complex Radon transform on subvarieties of in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12220-015-9643-1

    DOI

    http://dx.doi.org/10.1007/s12220-015-9643-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029952554


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Central Economics and Mathematics Institute", 
              "id": "https://www.grid.ac/institutes/grid.465303.7", 
              "name": [
                "Institut de Mathematiques, Universite Pierre et Marie Curie, BC247, 75252, Paris Cedex 05, France", 
                "CEMI Acad. Sc., 117418, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henkin", 
            "givenName": "Gennadi M.", 
            "id": "sg:person.07652754761.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652754761.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wyoming", 
              "id": "https://www.grid.ac/institutes/grid.135963.b", 
              "name": [
                "Department of Mathematics, University of Wyoming, 1000 E University Ave, 82071, Laramie, WY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polyakov", 
            "givenName": "Peter L.", 
            "id": "sg:person.012512023053.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512023053.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-3849-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001329144", 
              "https://doi.org/10.1007/978-1-4757-3849-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3849-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001329144", 
              "https://doi.org/10.1007/978-1-4757-3849-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003083672", 
              "https://doi.org/10.1007/bf02565627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1988.392.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007801568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01472212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011731827", 
              "https://doi.org/10.1007/bf01472212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2011.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012177697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01343164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016662371", 
              "https://doi.org/10.1007/bf01343164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160230202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017710426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160230202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017710426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-011-0737-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019351969", 
              "https://doi.org/10.1007/s00208-011-0737-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crelle.2010.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020857379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0081543812080160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021012671", 
              "https://doi.org/10.1134/s0081543812080160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-012-0380-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022926006", 
              "https://doi.org/10.1007/s00222-012-0380-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02684652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025606236", 
              "https://doi.org/10.1007/bf02684652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/form.1989.1.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026734142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11512-007-0056-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026784221", 
              "https://doi.org/10.1007/s11512-007-0056-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01349966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028603602", 
              "https://doi.org/10.1007/bf01349966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037063011", 
              "https://doi.org/10.1007/bf02565649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1041539414", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0068349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041539414", 
              "https://doi.org/10.1007/bfb0068349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0068349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041539414", 
              "https://doi.org/10.1007/bfb0068349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-011-0976-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041782294", 
              "https://doi.org/10.1007/s00209-011-0976-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01350129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041911234", 
              "https://doi.org/10.1007/bf01350129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9904-1967-11744-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042323546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12220-010-9158-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047793468", 
              "https://doi.org/10.1007/s12220-010-9158-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1977v032n03abeh001628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058194251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/sm1971v014n03abeh002623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058199042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5565/publmat_32188_01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072982151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7146/math.scand.a-11041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073613169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7146/math.scand.a-12211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073614016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660460"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-01", 
        "datePublishedReg": "2016-01-01", 
        "description": "We construct an explicit homotopy formula for the \u2202\u00af-complex on a reduced complete intersection subvariety V\u2282CPn. This formula can be interpreted as an explicit Hodge-type decomposition for residual currents on V. As a first application of this formula we obtained the explicit Hodge decomposition on arbitrary Riemann surfaces.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12220-015-9643-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136350", 
            "issn": [
              "1050-6926", 
              "1559-002X"
            ], 
            "name": "The Journal of Geometric Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Explicit Hodge-Type Decomposition on Projective Complete Intersections", 
        "pagination": "672-713", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8eb0c2e17ac55dfd78798eac688d7a10077f66d70d0f6fb66eba294bdbc5d564"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12220-015-9643-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029952554"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12220-015-9643-1", 
          "https://app.dimensions.ai/details/publication/pub.1029952554"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12220-015-9643-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-015-9643-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-015-9643-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-015-9643-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-015-9643-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12220-015-9643-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7e1528ecf1fb4f76a629509e0451a487
    4 schema:citation sg:pub.10.1007/978-1-4757-3849-0
    5 sg:pub.10.1007/bf01343164
    6 sg:pub.10.1007/bf01349966
    7 sg:pub.10.1007/bf01350129
    8 sg:pub.10.1007/bf01472212
    9 sg:pub.10.1007/bf02565627
    10 sg:pub.10.1007/bf02565649
    11 sg:pub.10.1007/bf02684652
    12 sg:pub.10.1007/bfb0068349
    13 sg:pub.10.1007/s00208-011-0737-1
    14 sg:pub.10.1007/s00209-011-0976-6
    15 sg:pub.10.1007/s00222-012-0380-9
    16 sg:pub.10.1007/s11512-007-0056-7
    17 sg:pub.10.1007/s12220-010-9158-8
    18 sg:pub.10.1134/s0081543812080160
    19 https://app.dimensions.ai/details/publication/pub.1041539414
    20 https://doi.org/10.1002/cpa.3160230202
    21 https://doi.org/10.1016/j.jfa.2011.02.018
    22 https://doi.org/10.1070/rm1977v032n03abeh001628
    23 https://doi.org/10.1070/sm1971v014n03abeh002623
    24 https://doi.org/10.1090/s0002-9904-1967-11744-0
    25 https://doi.org/10.1515/crelle.2010.021
    26 https://doi.org/10.1515/crll.1988.392.37
    27 https://doi.org/10.1515/form.1989.1.15
    28 https://doi.org/10.2307/1969060
    29 https://doi.org/10.2307/1969103
    30 https://doi.org/10.2307/1969552
    31 https://doi.org/10.2307/1970486
    32 https://doi.org/10.24033/bsmf.1515
    33 https://doi.org/10.5565/publmat_32188_01
    34 https://doi.org/10.7146/math.scand.a-11041
    35 https://doi.org/10.7146/math.scand.a-12211
    36 schema:datePublished 2016-01
    37 schema:datePublishedReg 2016-01-01
    38 schema:description We construct an explicit homotopy formula for the ∂¯-complex on a reduced complete intersection subvariety V⊂CPn. This formula can be interpreted as an explicit Hodge-type decomposition for residual currents on V. As a first application of this formula we obtained the explicit Hodge decomposition on arbitrary Riemann surfaces.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N2fcdfeed18c344c69f62ccfbc4796fdc
    43 N82baa19870f947cd98cc6e946316c84b
    44 sg:journal.1136350
    45 schema:name Explicit Hodge-Type Decomposition on Projective Complete Intersections
    46 schema:pagination 672-713
    47 schema:productId N87eee5316b634e1ab10586507d3472e3
    48 Nb8db48bc702c4b99aa8649b85586202a
    49 Nedf4387ee4e54587bda6b7a2336eecda
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029952554
    51 https://doi.org/10.1007/s12220-015-9643-1
    52 schema:sdDatePublished 2019-04-10T17:34
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Ne311efcb8b0844ffa390475f3297fb3c
    55 schema:url http://link.springer.com/10.1007%2Fs12220-015-9643-1
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N2fcdfeed18c344c69f62ccfbc4796fdc schema:volumeNumber 26
    60 rdf:type schema:PublicationVolume
    61 N7e1528ecf1fb4f76a629509e0451a487 rdf:first sg:person.07652754761.63
    62 rdf:rest Nde4be9cdaf4943828c75815e68503532
    63 N82baa19870f947cd98cc6e946316c84b schema:issueNumber 1
    64 rdf:type schema:PublicationIssue
    65 N87eee5316b634e1ab10586507d3472e3 schema:name dimensions_id
    66 schema:value pub.1029952554
    67 rdf:type schema:PropertyValue
    68 Nb8db48bc702c4b99aa8649b85586202a schema:name readcube_id
    69 schema:value 8eb0c2e17ac55dfd78798eac688d7a10077f66d70d0f6fb66eba294bdbc5d564
    70 rdf:type schema:PropertyValue
    71 Nde4be9cdaf4943828c75815e68503532 rdf:first sg:person.012512023053.55
    72 rdf:rest rdf:nil
    73 Ne311efcb8b0844ffa390475f3297fb3c schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Nedf4387ee4e54587bda6b7a2336eecda schema:name doi
    76 schema:value 10.1007/s12220-015-9643-1
    77 rdf:type schema:PropertyValue
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Pure Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1136350 schema:issn 1050-6926
    85 1559-002X
    86 schema:name The Journal of Geometric Analysis
    87 rdf:type schema:Periodical
    88 sg:person.012512023053.55 schema:affiliation https://www.grid.ac/institutes/grid.135963.b
    89 schema:familyName Polyakov
    90 schema:givenName Peter L.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512023053.55
    92 rdf:type schema:Person
    93 sg:person.07652754761.63 schema:affiliation https://www.grid.ac/institutes/grid.465303.7
    94 schema:familyName Henkin
    95 schema:givenName Gennadi M.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652754761.63
    97 rdf:type schema:Person
    98 sg:pub.10.1007/978-1-4757-3849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329144
    99 https://doi.org/10.1007/978-1-4757-3849-0
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01343164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016662371
    102 https://doi.org/10.1007/bf01343164
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01349966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028603602
    105 https://doi.org/10.1007/bf01349966
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01350129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041911234
    108 https://doi.org/10.1007/bf01350129
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01472212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011731827
    111 https://doi.org/10.1007/bf01472212
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02565627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003083672
    114 https://doi.org/10.1007/bf02565627
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf02565649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037063011
    117 https://doi.org/10.1007/bf02565649
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf02684652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025606236
    120 https://doi.org/10.1007/bf02684652
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bfb0068349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041539414
    123 https://doi.org/10.1007/bfb0068349
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00208-011-0737-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019351969
    126 https://doi.org/10.1007/s00208-011-0737-1
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00209-011-0976-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041782294
    129 https://doi.org/10.1007/s00209-011-0976-6
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00222-012-0380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022926006
    132 https://doi.org/10.1007/s00222-012-0380-9
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11512-007-0056-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026784221
    135 https://doi.org/10.1007/s11512-007-0056-7
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s12220-010-9158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047793468
    138 https://doi.org/10.1007/s12220-010-9158-8
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1134/s0081543812080160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021012671
    141 https://doi.org/10.1134/s0081543812080160
    142 rdf:type schema:CreativeWork
    143 https://app.dimensions.ai/details/publication/pub.1041539414 schema:CreativeWork
    144 https://doi.org/10.1002/cpa.3160230202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017710426
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.jfa.2011.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012177697
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1070/rm1977v032n03abeh001628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194251
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1070/sm1971v014n03abeh002623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058199042
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1090/s0002-9904-1967-11744-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042323546
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1515/crelle.2010.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020857379
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1515/crll.1988.392.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007801568
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1515/form.1989.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026734142
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.2307/1969060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674460
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.2307/1969103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674501
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.2307/1969552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674927
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.2307/1970486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675811
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.24033/bsmf.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660460
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.5565/publmat_32188_01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072982151
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.7146/math.scand.a-11041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073613169
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.7146/math.scand.a-12211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614016
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.135963.b schema:alternateName University of Wyoming
    177 schema:name Department of Mathematics, University of Wyoming, 1000 E University Ave, 82071, Laramie, WY, USA
    178 rdf:type schema:Organization
    179 https://www.grid.ac/institutes/grid.465303.7 schema:alternateName Central Economics and Mathematics Institute
    180 schema:name CEMI Acad. Sc., 117418, Moscow, Russia
    181 Institut de Mathematiques, Universite Pierre et Marie Curie, BC247, 75252, Paris Cedex 05, France
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...