Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Enrico Le Donne, Alessandro Ottazzi

ABSTRACT

We show that isometries between open sets of Carnot groups are affine. This result generalizes a result of Hamenstädt. Our proof does not rely on her proof. We show that each isometry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isometries of homogeneous manifolds equipped with homogeneous distances that induce the manifold topology. More... »

PAGES

330-345

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8

DOI

http://dx.doi.org/10.1007/s12220-014-9552-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007844467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, 40014, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Donne", 
        "givenName": "Enrico", 
        "id": "sg:person.01330732167.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CIRM Fondazione Bruno Kessler, Via Sommarive 14, 38123, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottazzi", 
        "givenName": "Alessandro", 
        "id": "sg:person.07605167513.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605167513.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01895673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003294348", 
          "https://doi.org/10.1007/bf01895673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01895673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003294348", 
          "https://doi.org/10.1007/bf01895673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-06-04090-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0004972708000440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0004972708000440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00971372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018241582", 
          "https://doi.org/10.1007/bf00971372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/advgeom-2014-0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019156609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1957-0088000-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032111487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-016-9341-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033591570", 
          "https://doi.org/10.1007/s10883-016-9341-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-016-9341-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033591570", 
          "https://doi.org/10.1007/s10883-016-9341-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00972413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035714226", 
          "https://doi.org/10.1007/bf00972413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00972413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035714226", 
          "https://doi.org/10.1007/bf00972413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-88-470-2853-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040297722", 
          "https://doi.org/10.1007/978-88-470-2853-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10883-012-9133-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040632159", 
          "https://doi.org/10.1007/s10883-012-9133-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.difgeo.2006.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044322538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-2014-12244-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059334486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-06-13532-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-70-03789-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/gt.2012.16.2135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069060446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2002.207.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/kjm/1250283693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083508618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214439462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214440436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214443604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214445536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/chel/341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098756876"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "We show that isometries between open sets of Carnot groups are affine. This result generalizes a result of Hamenst\u00e4dt. Our proof does not rely on her proof. We show that each isometry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isometries of homogeneous manifolds equipped with homogeneous distances that induce the manifold topology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12220-014-9552-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136350", 
        "issn": [
          "1050-6926", 
          "1559-002X"
        ], 
        "name": "The Journal of Geometric Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds", 
    "pagination": "330-345", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "255e0455cee6ddf7a1c1997e6db67f6a5e597b30852330814849c8be8f0def71"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12220-014-9552-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007844467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12220-014-9552-8", 
      "https://app.dimensions.ai/details/publication/pub.1007844467"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12220-014-9552-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12220-014-9552-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N16a83ea1df4e42d595580e076fa852a3
4 schema:citation sg:pub.10.1007/978-88-470-2853-1_8
5 sg:pub.10.1007/bf00971372
6 sg:pub.10.1007/bf00972413
7 sg:pub.10.1007/bf01895673
8 sg:pub.10.1007/s10883-012-9133-8
9 sg:pub.10.1007/s10883-016-9341-8
10 https://doi.org/10.1016/j.difgeo.2006.04.005
11 https://doi.org/10.1017/s0004972708000440
12 https://doi.org/10.1090/chel/341
13 https://doi.org/10.1090/s0002-9939-1957-0088000-x
14 https://doi.org/10.1090/s0002-9939-2014-12244-1
15 https://doi.org/10.1090/s0002-9947-06-04090-6
16 https://doi.org/10.1215/kjm/1250283693
17 https://doi.org/10.1215/s0012-7094-06-13532-9
18 https://doi.org/10.1215/s0012-7094-70-03789-0
19 https://doi.org/10.1515/advgeom-2014-0015
20 https://doi.org/10.2140/gt.2012.16.2135
21 https://doi.org/10.2140/pjm.2002.207.149
22 https://doi.org/10.2307/1968928
23 https://doi.org/10.2307/1969226
24 https://doi.org/10.2307/1969795
25 https://doi.org/10.2307/1971484
26 https://doi.org/10.4310/jdg/1214439462
27 https://doi.org/10.4310/jdg/1214440436
28 https://doi.org/10.4310/jdg/1214443604
29 https://doi.org/10.4310/jdg/1214445536
30 schema:datePublished 2016-01
31 schema:datePublishedReg 2016-01-01
32 schema:description We show that isometries between open sets of Carnot groups are affine. This result generalizes a result of Hamenstädt. Our proof does not rely on her proof. We show that each isometry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isometries of homogeneous manifolds equipped with homogeneous distances that induce the manifold topology.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N98e2813ac0804748af5fa65b092056cd
37 Na9ad36671af244789a8a4d789959442c
38 sg:journal.1136350
39 schema:name Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds
40 schema:pagination 330-345
41 schema:productId N6d46a9b76c9f480dbdee2ea0ca88e54f
42 N71d37e86a2d94d2bbf9fb3beb82026d6
43 Nb08edfc5f408405f8786cec2a734dae7
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007844467
45 https://doi.org/10.1007/s12220-014-9552-8
46 schema:sdDatePublished 2019-04-10T23:26
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N61e337ecc1394c4b9cc35fc6868ff8df
49 schema:url http://link.springer.com/10.1007%2Fs12220-014-9552-8
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N16a83ea1df4e42d595580e076fa852a3 rdf:first sg:person.01330732167.20
54 rdf:rest N1737f349c5f14ef5a99ebba4550301b9
55 N1737f349c5f14ef5a99ebba4550301b9 rdf:first sg:person.07605167513.81
56 rdf:rest rdf:nil
57 N61e337ecc1394c4b9cc35fc6868ff8df schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N6d46a9b76c9f480dbdee2ea0ca88e54f schema:name readcube_id
60 schema:value 255e0455cee6ddf7a1c1997e6db67f6a5e597b30852330814849c8be8f0def71
61 rdf:type schema:PropertyValue
62 N71d37e86a2d94d2bbf9fb3beb82026d6 schema:name doi
63 schema:value 10.1007/s12220-014-9552-8
64 rdf:type schema:PropertyValue
65 N98e2813ac0804748af5fa65b092056cd schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Na9ad36671af244789a8a4d789959442c schema:volumeNumber 26
68 rdf:type schema:PublicationVolume
69 Naec028a1e0d141beaf8b44b1f0b43676 schema:name CIRM Fondazione Bruno Kessler, Via Sommarive 14, 38123, Trento, Italy
70 rdf:type schema:Organization
71 Nb08edfc5f408405f8786cec2a734dae7 schema:name dimensions_id
72 schema:value pub.1007844467
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1136350 schema:issn 1050-6926
81 1559-002X
82 schema:name The Journal of Geometric Analysis
83 rdf:type schema:Periodical
84 sg:person.01330732167.20 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
85 schema:familyName Le Donne
86 schema:givenName Enrico
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20
88 rdf:type schema:Person
89 sg:person.07605167513.81 schema:affiliation Naec028a1e0d141beaf8b44b1f0b43676
90 schema:familyName Ottazzi
91 schema:givenName Alessandro
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605167513.81
93 rdf:type schema:Person
94 sg:pub.10.1007/978-88-470-2853-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040297722
95 https://doi.org/10.1007/978-88-470-2853-1_8
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00971372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018241582
98 https://doi.org/10.1007/bf00971372
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00972413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035714226
101 https://doi.org/10.1007/bf00972413
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01895673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003294348
104 https://doi.org/10.1007/bf01895673
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10883-012-9133-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040632159
107 https://doi.org/10.1007/s10883-012-9133-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10883-016-9341-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033591570
110 https://doi.org/10.1007/s10883-016-9341-8
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.difgeo.2006.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044322538
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s0004972708000440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016699315
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1090/chel/341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098756876
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1090/s0002-9939-1957-0088000-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032111487
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/s0002-9939-2014-12244-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059334486
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/s0002-9947-06-04090-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300944
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1215/kjm/1250283693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083508618
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1215/s0012-7094-06-13532-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415642
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1215/s0012-7094-70-03789-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418341
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1515/advgeom-2014-0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019156609
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2140/gt.2012.16.2135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060446
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2140/pjm.2002.207.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071156
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2307/1968928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674333
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2307/1969226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674617
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/1969795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675158
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2307/1971484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676747
143 rdf:type schema:CreativeWork
144 https://doi.org/10.4310/jdg/1214439462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459514
145 rdf:type schema:CreativeWork
146 https://doi.org/10.4310/jdg/1214440436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459573
147 rdf:type schema:CreativeWork
148 https://doi.org/10.4310/jdg/1214443604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459731
149 rdf:type schema:CreativeWork
150 https://doi.org/10.4310/jdg/1214445536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459806
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
153 schema:name Department of Mathematics and Statistics, University of Jyväskylä, 40014, Jyväskylä, Finland
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...