Ontology type: schema:ScholarlyArticle Open Access: True
2016-01
AUTHORSEnrico Le Donne, Alessandro Ottazzi
ABSTRACTWe show that isometries between open sets of Carnot groups are affine. This result generalizes a result of Hamenstädt. Our proof does not rely on her proof. We show that each isometry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isometries of homogeneous manifolds equipped with homogeneous distances that induce the manifold topology. More... »
PAGES330-345
http://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8
DOIhttp://dx.doi.org/10.1007/s12220-014-9552-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007844467
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Jyv\u00e4skyl\u00e4",
"id": "https://www.grid.ac/institutes/grid.9681.6",
"name": [
"Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, 40014, Jyv\u00e4skyl\u00e4, Finland"
],
"type": "Organization"
},
"familyName": "Le Donne",
"givenName": "Enrico",
"id": "sg:person.01330732167.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"CIRM Fondazione Bruno Kessler, Via Sommarive 14, 38123, Trento, Italy"
],
"type": "Organization"
},
"familyName": "Ottazzi",
"givenName": "Alessandro",
"id": "sg:person.07605167513.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605167513.81"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01895673",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003294348",
"https://doi.org/10.1007/bf01895673"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01895673",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003294348",
"https://doi.org/10.1007/bf01895673"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-06-04090-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006300944"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0004972708000440",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016699315"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0004972708000440",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016699315"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00971372",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018241582",
"https://doi.org/10.1007/bf00971372"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/advgeom-2014-0015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019156609"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9939-1957-0088000-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032111487"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10883-016-9341-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033591570",
"https://doi.org/10.1007/s10883-016-9341-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10883-016-9341-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033591570",
"https://doi.org/10.1007/s10883-016-9341-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00972413",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035714226",
"https://doi.org/10.1007/bf00972413"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00972413",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035714226",
"https://doi.org/10.1007/bf00972413"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-88-470-2853-1_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040297722",
"https://doi.org/10.1007/978-88-470-2853-1_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10883-012-9133-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040632159",
"https://doi.org/10.1007/s10883-012-9133-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.difgeo.2006.04.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044322538"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9939-2014-12244-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059334486"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/s0012-7094-06-13532-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064415642"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/s0012-7094-70-03789-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064418341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/gt.2012.16.2135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069060446"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.2002.207.149",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069071156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1968928",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069674333"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1969226",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069674617"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1969795",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069675158"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1971484",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676747"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/kjm/1250283693",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083508618"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214439462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084459514"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214440436",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084459573"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214443604",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084459731"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214445536",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084459806"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/chel/341",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098756876"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-01",
"datePublishedReg": "2016-01-01",
"description": "We show that isometries between open sets of Carnot groups are affine. This result generalizes a result of Hamenst\u00e4dt. Our proof does not rely on her proof. We show that each isometry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isometries of homogeneous manifolds equipped with homogeneous distances that induce the manifold topology.",
"genre": "research_article",
"id": "sg:pub.10.1007/s12220-014-9552-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136350",
"issn": [
"1050-6926",
"1559-002X"
],
"name": "The Journal of Geometric Analysis",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "26"
}
],
"name": "Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds",
"pagination": "330-345",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"255e0455cee6ddf7a1c1997e6db67f6a5e597b30852330814849c8be8f0def71"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12220-014-9552-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007844467"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12220-014-9552-8",
"https://app.dimensions.ai/details/publication/pub.1007844467"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T23:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000520.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs12220-014-9552-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-014-9552-8'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
21 PREDICATES
53 URIs
19 LITERALS
7 BLANK NODES