An Index Formula for Perturbed Dirac Operators on Lie Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-02-22

AUTHORS

Catarina Carvalho, Victor Nistor

ABSTRACT

We prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called “Callias-type operators”. More precisely, we study operators of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P := \hspace* {.5mm} / \hspace* {-2.3mm}D+ V$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hspace* {.5mm} / \hspace* {-2.3mm}D$\end{document} is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V−1 extends to a smooth vector bundle endomorphism over M∖K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1–2):1–31, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators. More... »

PAGES

1808-1843

References to SciGraph publications

  • 1978-10. Some remarks on the paper of Callias in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-04. An index theorem for gauge-invariant families: The case of solvable groups in ACTA MATHEMATICA HUNGARICA
  • 1977-06. TheC*-algebra of a singular elliptic problem on a noncompact Riemannian manifold in MATHEMATISCHE ZEITSCHRIFT
  • 2007-06-16. Periodicity and the Determinant Bundle in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1978-10. Axial anomalies and index theorems on open spaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-06. Bounded imaginary powers of differential operators on manifolds with conical singularities in MATHEMATISCHE ZEITSCHRIFT
  • 1980. A Groupoid Approach to C*-Algebras in NONE
  • 1995-09. A K-theoretic relative index theorem and Callias-type Dirac operators in MATHEMATISCHE ANNALEN
  • 1972-12. Un problema ai limiti ellittico in un dominio non limitato in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 2008-12-24. On the Fedosov-Hörmander Formula for Differential Operators in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2001. Analysis of geometric operators on open manifolds: A groupoid approach in QUANTIZATION OF SINGULAR SYMPLECTIC QUOTIENTS
  • 2002-07. Crossed Products of C*-Algebras and Spectral Analysis of Quantum Hamiltonians in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1996-11. Metrics with harmonic spinors in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 1999-12. On the Kernel of the Equivariant Dirac Operator in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 1993-09. On the index of Callias-type operators in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 1978. K-Theory, An Introduction in NONE
  • 1994-03. Callias' index theorem, elliptic boundary conditions, and cutting and gluing in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1992-01. Harmonic spinors on Riemann surfaces in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7

    DOI

    http://dx.doi.org/10.1007/s12220-013-9396-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030940254


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de Matem\u00e1tica, Instituto Superior T\u00e9cnico, UTL, Lisbon, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.9983.b", 
              "name": [
                "Departamento de Matem\u00e1tica, Instituto Superior T\u00e9cnico, UTL, Lisbon, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carvalho", 
            "givenName": "Catarina", 
            "id": "sg:person.011030544300.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Math. Dept., Pennsylvania State University, 16802, University Park, PA, USA", 
                "Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nistor", 
            "givenName": "Victor", 
            "id": "sg:person.011176764757.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01896237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010910177", 
              "https://doi.org/10.1007/bf01896237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01202525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022113506", 
              "https://doi.org/10.1007/bf01202525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01179784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008467388", 
              "https://doi.org/10.1007/bf01179784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02246994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030896333", 
              "https://doi.org/10.1007/bf02246994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00136869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013888992", 
              "https://doi.org/10.1007/bf00136869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-79890-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020383004", 
              "https://doi.org/10.1007/978-3-540-79890-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01202526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030899885", 
              "https://doi.org/10.1007/bf01202526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0277-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008339180", 
              "https://doi.org/10.1007/s00220-007-0277-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024517714643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028108912", 
              "https://doi.org/10.1023/a:1024517714643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02412029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003779561", 
              "https://doi.org/10.1007/bf02412029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00020-008-1642-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544081", 
              "https://doi.org/10.1007/s00020-008-1642-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01460989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032143894", 
              "https://doi.org/10.1007/bf01460989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200200669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047084767", 
              "https://doi.org/10.1007/s002200200669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006605923605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018356619", 
              "https://doi.org/10.1023/a:1006605923605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0091072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021794234", 
              "https://doi.org/10.1007/bfb0091072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041410308", 
              "https://doi.org/10.1007/bf02099412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-003-0495-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031232349", 
              "https://doi.org/10.1007/s00209-003-0495-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8364-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053165018", 
              "https://doi.org/10.1007/978-3-0348-8364-1_8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-02-22", 
        "datePublishedReg": "2013-02-22", 
        "description": "We prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called \u201cCallias-type operators\u201d. More precisely, we study operators of the form \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$P := \\hspace* {.5mm} / \\hspace* {-2.3mm}D+ V$\\end{document}, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\hspace* {.5mm} / \\hspace* {-2.3mm}D$\\end{document} is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V\u22121 extends to a smooth vector bundle endomorphism over M\u2216K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1\u20132):1\u201331, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12220-013-9396-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136350", 
            "issn": [
              "1050-6926", 
              "1559-002X"
            ], 
            "name": "The Journal of Geometric Analysis", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "keywords": [
          "Lie manifolds", 
          "Callias-type operators", 
          "Dirac operator", 
          "pseudodifferential operators", 
          "index formula", 
          "unbounded potential", 
          "elliptic pseudodifferential operators", 
          "non-compact Riemannian manifolds", 
          "perturbed Dirac operators", 
          "Riemannian manifold", 
          "multiplication operators", 
          "order zero", 
          "hyperbolic space", 
          "manifold", 
          "infinity", 
          "M. Examples", 
          "operators", 
          "particular results", 
          "formula", 
          "computation", 
          "compactification", 
          "endomorphisms", 
          "class", 
          "Euclidean", 
          "zeros", 
          "calculus", 
          "space", 
          "M0", 
          "proof", 
          "scattering", 
          "first step", 
          "results", 
          "instances", 
          "Carvalho", 
          "form", 
          "tool", 
          "step", 
          "potential", 
          "way", 
          "analysis", 
          "index", 
          "face", 
          "example"
        ], 
        "name": "An Index Formula for Perturbed Dirac Operators on Lie Manifolds", 
        "pagination": "1808-1843", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030940254"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12220-013-9396-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12220-013-9396-7", 
          "https://app.dimensions.ai/details/publication/pub.1030940254"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_608.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12220-013-9396-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      85 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12220-013-9396-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na9f09a23cd4f49038045de6a9100c944
    4 schema:citation sg:pub.10.1007/978-3-0348-8364-1_8
    5 sg:pub.10.1007/978-3-540-79890-3
    6 sg:pub.10.1007/bf00136869
    7 sg:pub.10.1007/bf01179784
    8 sg:pub.10.1007/bf01202525
    9 sg:pub.10.1007/bf01202526
    10 sg:pub.10.1007/bf01460989
    11 sg:pub.10.1007/bf01896237
    12 sg:pub.10.1007/bf02099412
    13 sg:pub.10.1007/bf02246994
    14 sg:pub.10.1007/bf02412029
    15 sg:pub.10.1007/bfb0091072
    16 sg:pub.10.1007/s00020-008-1642-1
    17 sg:pub.10.1007/s00209-003-0495-1
    18 sg:pub.10.1007/s00220-007-0277-4
    19 sg:pub.10.1007/s002200200669
    20 sg:pub.10.1023/a:1006605923605
    21 sg:pub.10.1023/a:1024517714643
    22 schema:datePublished 2013-02-22
    23 schema:datePublishedReg 2013-02-22
    24 schema:description We prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called “Callias-type operators”. More precisely, we study operators of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P := \hspace* {.5mm} / \hspace* {-2.3mm}D+ V$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hspace* {.5mm} / \hspace* {-2.3mm}D$\end{document} is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V−1 extends to a smooth vector bundle endomorphism over M∖K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1–2):1–31, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N172a7b12c81d4166b95f9fe4020a2c81
    28 Nbb40c7026b744e2e897f19558e5b2422
    29 sg:journal.1136350
    30 schema:keywords Callias-type operators
    31 Carvalho
    32 Dirac operator
    33 Euclidean
    34 Lie manifolds
    35 M. Examples
    36 M0
    37 Riemannian manifold
    38 analysis
    39 calculus
    40 class
    41 compactification
    42 computation
    43 elliptic pseudodifferential operators
    44 endomorphisms
    45 example
    46 face
    47 first step
    48 form
    49 formula
    50 hyperbolic space
    51 index
    52 index formula
    53 infinity
    54 instances
    55 manifold
    56 multiplication operators
    57 non-compact Riemannian manifolds
    58 operators
    59 order zero
    60 particular results
    61 perturbed Dirac operators
    62 potential
    63 proof
    64 pseudodifferential operators
    65 results
    66 scattering
    67 space
    68 step
    69 tool
    70 unbounded potential
    71 way
    72 zeros
    73 schema:name An Index Formula for Perturbed Dirac Operators on Lie Manifolds
    74 schema:pagination 1808-1843
    75 schema:productId N63bccb7093c0427ca1828356265fc35a
    76 Nb1fec7df727549389b7660d6ae15c0d5
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030940254
    78 https://doi.org/10.1007/s12220-013-9396-7
    79 schema:sdDatePublished 2022-08-04T17:00
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N6176c94710c84093bcc95be624529132
    82 schema:url https://doi.org/10.1007/s12220-013-9396-7
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N172a7b12c81d4166b95f9fe4020a2c81 schema:issueNumber 4
    87 rdf:type schema:PublicationIssue
    88 N6176c94710c84093bcc95be624529132 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N63bccb7093c0427ca1828356265fc35a schema:name doi
    91 schema:value 10.1007/s12220-013-9396-7
    92 rdf:type schema:PropertyValue
    93 Na9f09a23cd4f49038045de6a9100c944 rdf:first sg:person.011030544300.49
    94 rdf:rest Naac9450680064cf78946625579753a26
    95 Naac9450680064cf78946625579753a26 rdf:first sg:person.011176764757.94
    96 rdf:rest rdf:nil
    97 Nb1fec7df727549389b7660d6ae15c0d5 schema:name dimensions_id
    98 schema:value pub.1030940254
    99 rdf:type schema:PropertyValue
    100 Nbb40c7026b744e2e897f19558e5b2422 schema:volumeNumber 24
    101 rdf:type schema:PublicationVolume
    102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Mathematical Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Pure Mathematics
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1136350 schema:issn 1050-6926
    109 1559-002X
    110 schema:name The Journal of Geometric Analysis
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.011030544300.49 schema:affiliation grid-institutes:grid.9983.b
    114 schema:familyName Carvalho
    115 schema:givenName Catarina
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49
    117 rdf:type schema:Person
    118 sg:person.011176764757.94 schema:affiliation grid-institutes:None
    119 schema:familyName Nistor
    120 schema:givenName Victor
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94
    122 rdf:type schema:Person
    123 sg:pub.10.1007/978-3-0348-8364-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053165018
    124 https://doi.org/10.1007/978-3-0348-8364-1_8
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-540-79890-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020383004
    127 https://doi.org/10.1007/978-3-540-79890-3
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf00136869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013888992
    130 https://doi.org/10.1007/bf00136869
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01179784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008467388
    133 https://doi.org/10.1007/bf01179784
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf01202525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022113506
    136 https://doi.org/10.1007/bf01202525
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf01202526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030899885
    139 https://doi.org/10.1007/bf01202526
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf01460989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032143894
    142 https://doi.org/10.1007/bf01460989
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf01896237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010910177
    145 https://doi.org/10.1007/bf01896237
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02099412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041410308
    148 https://doi.org/10.1007/bf02099412
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02246994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030896333
    151 https://doi.org/10.1007/bf02246994
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02412029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003779561
    154 https://doi.org/10.1007/bf02412029
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bfb0091072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021794234
    157 https://doi.org/10.1007/bfb0091072
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00020-008-1642-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544081
    160 https://doi.org/10.1007/s00020-008-1642-1
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00209-003-0495-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031232349
    163 https://doi.org/10.1007/s00209-003-0495-1
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00220-007-0277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008339180
    166 https://doi.org/10.1007/s00220-007-0277-4
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s002200200669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047084767
    169 https://doi.org/10.1007/s002200200669
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1006605923605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018356619
    172 https://doi.org/10.1023/a:1006605923605
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1023/a:1024517714643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028108912
    175 https://doi.org/10.1023/a:1024517714643
    176 rdf:type schema:CreativeWork
    177 grid-institutes:None schema:alternateName Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania
    178 schema:name Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania
    179 Math. Dept., Pennsylvania State University, 16802, University Park, PA, USA
    180 rdf:type schema:Organization
    181 grid-institutes:grid.9983.b schema:alternateName Departamento de Matemática, Instituto Superior Técnico, UTL, Lisbon, Portugal
    182 schema:name Departamento de Matemática, Instituto Superior Técnico, UTL, Lisbon, Portugal
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...