Ontology type: schema:ScholarlyArticle Open Access: True
2013-02-22
AUTHORSCatarina Carvalho, Victor Nistor
ABSTRACTWe prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called “Callias-type operators”. More precisely, we study operators of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P := \hspace* {.5mm} / \hspace* {-2.3mm}D+ V$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hspace* {.5mm} / \hspace* {-2.3mm}D$\end{document} is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V−1 extends to a smooth vector bundle endomorphism over M∖K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1–2):1–31, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators. More... »
PAGES1808-1843
http://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7
DOIhttp://dx.doi.org/10.1007/s12220-013-9396-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030940254
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Instituto Superior T\u00e9cnico, UTL, Lisbon, Portugal",
"id": "http://www.grid.ac/institutes/grid.9983.b",
"name": [
"Departamento de Matem\u00e1tica, Instituto Superior T\u00e9cnico, UTL, Lisbon, Portugal"
],
"type": "Organization"
},
"familyName": "Carvalho",
"givenName": "Catarina",
"id": "sg:person.011030544300.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Math. Dept., Pennsylvania State University, 16802, University Park, PA, USA",
"Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania"
],
"type": "Organization"
},
"familyName": "Nistor",
"givenName": "Victor",
"id": "sg:person.011176764757.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01896237",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010910177",
"https://doi.org/10.1007/bf01896237"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01202525",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022113506",
"https://doi.org/10.1007/bf01202525"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01179784",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008467388",
"https://doi.org/10.1007/bf01179784"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02246994",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030896333",
"https://doi.org/10.1007/bf02246994"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00136869",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013888992",
"https://doi.org/10.1007/bf00136869"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-79890-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020383004",
"https://doi.org/10.1007/978-3-540-79890-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01202526",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030899885",
"https://doi.org/10.1007/bf01202526"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0277-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008339180",
"https://doi.org/10.1007/s00220-007-0277-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1024517714643",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028108912",
"https://doi.org/10.1023/a:1024517714643"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02412029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003779561",
"https://doi.org/10.1007/bf02412029"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-008-1642-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010544081",
"https://doi.org/10.1007/s00020-008-1642-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01460989",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032143894",
"https://doi.org/10.1007/bf01460989"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002200200669",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047084767",
"https://doi.org/10.1007/s002200200669"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1006605923605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018356619",
"https://doi.org/10.1023/a:1006605923605"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0091072",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021794234",
"https://doi.org/10.1007/bfb0091072"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02099412",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041410308",
"https://doi.org/10.1007/bf02099412"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00209-003-0495-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031232349",
"https://doi.org/10.1007/s00209-003-0495-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8364-1_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053165018",
"https://doi.org/10.1007/978-3-0348-8364-1_8"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-02-22",
"datePublishedReg": "2013-02-22",
"description": "We prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called \u201cCallias-type operators\u201d. More precisely, we study operators of the form \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$P := \\hspace* {.5mm} / \\hspace* {-2.3mm}D+ V$\\end{document}, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\hspace* {.5mm} / \\hspace* {-2.3mm}D$\\end{document} is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V\u22121 extends to a smooth vector bundle endomorphism over M\u2216K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1\u20132):1\u201331, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators.",
"genre": "article",
"id": "sg:pub.10.1007/s12220-013-9396-7",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136350",
"issn": [
"1050-6926",
"1559-002X"
],
"name": "The Journal of Geometric Analysis",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "24"
}
],
"keywords": [
"Lie manifolds",
"Callias-type operators",
"Dirac operator",
"pseudodifferential operators",
"index formula",
"unbounded potential",
"elliptic pseudodifferential operators",
"non-compact Riemannian manifolds",
"perturbed Dirac operators",
"Riemannian manifold",
"multiplication operators",
"order zero",
"hyperbolic space",
"manifold",
"infinity",
"M. Examples",
"operators",
"particular results",
"formula",
"computation",
"compactification",
"endomorphisms",
"class",
"Euclidean",
"zeros",
"calculus",
"space",
"M0",
"proof",
"scattering",
"first step",
"results",
"instances",
"Carvalho",
"form",
"tool",
"step",
"potential",
"way",
"analysis",
"index",
"face",
"example"
],
"name": "An Index Formula for Perturbed Dirac Operators on Lie Manifolds",
"pagination": "1808-1843",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030940254"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12220-013-9396-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12220-013-9396-7",
"https://app.dimensions.ai/details/publication/pub.1030940254"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_608.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12220-013-9396-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12220-013-9396-7'
This table displays all metadata directly associated to this object as RDF triples.
183 TRIPLES
21 PREDICATES
85 URIs
59 LITERALS
6 BLANK NODES