Three-Dimensional Numerical Simulation on Marangoni Convection in a Sessile Water Droplet Evaporating in its Vapor at Low Pressure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-09

AUTHORS

Yu Zhang, You-Rong Li, Jia-Jia Yu, Qiu-Sheng Liu

ABSTRACT

In order to understand the effect of Marangoni convection on the evaporation rate and the flow pattern, we performed a series of three-dimensional numerical simulations on evaporation process of sessile water droplet by introducing a kinetic model. Substrate temperature and the ratio of vapor pressure varied from 299 K to 308 K and from 0.92 to 0.99, respectively. The variation range of contact angle θ was between 9.15° and 120°. Results show that the axisymmetric ring-shape temperature distribution on droplet free surface transforms into a serrated temperature distribution because of the enhancing Marangoni convection with the increase of substrate temperature. In addition, with the decrease of vapor pressure, the total evaporation rate on free surface will be increased and the Marangoni effect will be enhanced. The flow pattern is axisymmetric at 90o ≤ θ ≤ 120o when the substrate temperature is fixed. However, it shifts to a multi-cellular pattern with the decrease of contact angle as a result of the competition between Marangoni flow and the evaporation. Additionally, the total evaporation rate increases with the increase of contact angle when contact angle is above 60o, but when the contact angle is below 60o, the trend is reverted. The temperature distribution becomes distinct at a small contact angle. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9694-1

DOI

http://dx.doi.org/10.1007/s12217-019-9694-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112673514


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "You-Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Jia-Jia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qiu-Sheng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2007.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001716512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1672-6529(09)60221-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002266832", 
          "https://doi.org/10.1016/s1672-6529(09)60221-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1672-6529(09)60221-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002266832", 
          "https://doi.org/10.1016/s1672-6529(09)60221-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-013-9354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005670497", 
          "https://doi.org/10.1007/s12217-013-9354-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02870377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010651481", 
          "https://doi.org/10.1007/bf02870377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02870377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010651481", 
          "https://doi.org/10.1007/bf02870377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9200-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012234011", 
          "https://doi.org/10.1007/s12217-010-9200-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9200-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012234011", 
          "https://doi.org/10.1007/s12217-010-9200-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013692866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(77)90396-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016062873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2016.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020470748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2011.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020684950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026160067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026643091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-015-9426-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027098941", 
          "https://doi.org/10.1007/s12217-015-9426-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2008.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029087895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15567260701333109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032556317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(00)00086-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032992109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033482593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034501869", 
          "https://doi.org/10.1038/srep08614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9224-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036571455", 
          "https://doi.org/10.1007/s12217-010-9224-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9224-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036571455", 
          "https://doi.org/10.1007/s12217-010-9224-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037847007", 
          "https://doi.org/10.1038/39827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037847007", 
          "https://doi.org/10.1038/39827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040089215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040566474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040566474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2011.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043452343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200800098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045342591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047677722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050768315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008005004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053803414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008005004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053803414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112010005446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054074122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112010005446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054074122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.5b00511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055085203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0118322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0118322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la047528s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056147125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la047528s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056147125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la053450j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056149971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la053450j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056149971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la303916u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056157112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la8012206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056162937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la8012206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056162937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2789402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057867264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3121214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057913393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/interfacphenomheattransfer.2015013344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068143175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085858859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5006707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099673282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2018.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105699459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9645-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105731596", 
          "https://doi.org/10.1007/s12217-018-9645-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-09", 
    "datePublishedReg": "2019-03-09", 
    "description": "In order to understand the effect of Marangoni convection on the evaporation rate and the flow pattern, we performed a series of three-dimensional numerical simulations on evaporation process of sessile water droplet by introducing a kinetic model. Substrate temperature and the ratio of vapor pressure varied from 299 K to 308 K and from 0.92 to 0.99, respectively. The variation range of contact angle \u03b8 was between 9.15\u00b0 and 120\u00b0. Results show that the axisymmetric ring-shape temperature distribution on droplet free surface transforms into a serrated temperature distribution because of the enhancing Marangoni convection with the increase of substrate temperature. In addition, with the decrease of vapor pressure, the total evaporation rate on free surface will be increased and the Marangoni effect will be enhanced. The flow pattern is axisymmetric at 90o \u2264 \u03b8 \u2264 120o when the substrate temperature is fixed. However, it shifts to a multi-cellular pattern with the decrease of contact angle as a result of the competition between Marangoni flow and the evaporation. Additionally, the total evaporation rate increases with the increase of contact angle when contact angle is above 60o, but when the contact angle is below 60o, the trend is reverted. The temperature distribution becomes distinct at a small contact angle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9694-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Three-Dimensional Numerical Simulation on Marangoni Convection in a Sessile Water Droplet Evaporating in its Vapor at Low Pressure", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1c68c5e47ccbc4344f368a157b61adb89f63456e6f139511e5284c53836aeb4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9694-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112673514"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9694-1", 
      "https://app.dimensions.ai/details/publication/pub.1112673514"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11716_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9694-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9694-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9694-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9694-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9694-1'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      65 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9694-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nb771b5eaa57a41f8aecf2740f84812dc
4 schema:citation sg:pub.10.1007/bf02870377
5 sg:pub.10.1007/s12217-010-9200-2
6 sg:pub.10.1007/s12217-010-9224-7
7 sg:pub.10.1007/s12217-013-9354-9
8 sg:pub.10.1007/s12217-015-9426-0
9 sg:pub.10.1007/s12217-018-9645-2
10 sg:pub.10.1016/s1672-6529(09)60221-3
11 sg:pub.10.1038/39827
12 sg:pub.10.1038/srep08614
13 https://doi.org/10.1002/cphc.200800098
14 https://doi.org/10.1016/0021-9797(77)90396-4
15 https://doi.org/10.1016/j.applthermaleng.2006.01.014
16 https://doi.org/10.1016/j.ces.2011.11.009
17 https://doi.org/10.1016/j.colsurfa.2007.12.022
18 https://doi.org/10.1016/j.colsurfa.2008.09.047
19 https://doi.org/10.1016/j.colsurfa.2011.07.013
20 https://doi.org/10.1016/j.energy.2010.10.044
21 https://doi.org/10.1016/j.expthermflusci.2018.07.016
22 https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.006
23 https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.037
24 https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.003
25 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.017
26 https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.042
27 https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.076
28 https://doi.org/10.1016/j.jcis.2016.09.011
29 https://doi.org/10.1016/j.rser.2015.11.014
30 https://doi.org/10.1016/s0017-9310(00)00086-7
31 https://doi.org/10.1017/s0022112008005004
32 https://doi.org/10.1017/s0022112010005446
33 https://doi.org/10.1021/acs.chemrev.5b00511
34 https://doi.org/10.1021/jp0118322
35 https://doi.org/10.1021/la047528s
36 https://doi.org/10.1021/la053450j
37 https://doi.org/10.1021/la303916u
38 https://doi.org/10.1021/la8012206
39 https://doi.org/10.1063/1.2789402
40 https://doi.org/10.1063/1.3121214
41 https://doi.org/10.1063/1.5006707
42 https://doi.org/10.1080/15567260701333109
43 https://doi.org/10.1103/physrevlett.105.136102
44 https://doi.org/10.1615/interfacphenomheattransfer.2015013344
45 schema:datePublished 2019-03-09
46 schema:datePublishedReg 2019-03-09
47 schema:description In order to understand the effect of Marangoni convection on the evaporation rate and the flow pattern, we performed a series of three-dimensional numerical simulations on evaporation process of sessile water droplet by introducing a kinetic model. Substrate temperature and the ratio of vapor pressure varied from 299 K to 308 K and from 0.92 to 0.99, respectively. The variation range of contact angle θ was between 9.15° and 120°. Results show that the axisymmetric ring-shape temperature distribution on droplet free surface transforms into a serrated temperature distribution because of the enhancing Marangoni convection with the increase of substrate temperature. In addition, with the decrease of vapor pressure, the total evaporation rate on free surface will be increased and the Marangoni effect will be enhanced. The flow pattern is axisymmetric at 90o ≤ θ ≤ 120o when the substrate temperature is fixed. However, it shifts to a multi-cellular pattern with the decrease of contact angle as a result of the competition between Marangoni flow and the evaporation. Additionally, the total evaporation rate increases with the increase of contact angle when contact angle is above 60o, but when the contact angle is below 60o, the trend is reverted. The temperature distribution becomes distinct at a small contact angle.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf sg:journal.1026232
52 schema:name Three-Dimensional Numerical Simulation on Marangoni Convection in a Sessile Water Droplet Evaporating in its Vapor at Low Pressure
53 schema:pagination 1-10
54 schema:productId N6beeb5c1b19b4048942df209d4ee4516
55 Nb7c407c35be34b3cb439939d06568081
56 Nf075c551dedd4a56a3125329cf15625e
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112673514
58 https://doi.org/10.1007/s12217-019-9694-1
59 schema:sdDatePublished 2019-04-11T11:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N70a8568e7c954d0d993dbbfe79706778
62 schema:url https://link.springer.com/10.1007%2Fs12217-019-9694-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0100519298b54cba844fed94a297280d schema:affiliation https://www.grid.ac/institutes/grid.190737.b
67 schema:familyName Yu
68 schema:givenName Jia-Jia
69 rdf:type schema:Person
70 N49db8b4f5d2f41238fd26a99f2c24f05 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
71 schema:familyName Zhang
72 schema:givenName Yu
73 rdf:type schema:Person
74 N6053fc4608ee4bb5b34bfca5da101323 rdf:first Naf7e80f4de424cb88d7eb1e6baa705f2
75 rdf:rest N857e51020d58420b8492ad86821e89a5
76 N6beeb5c1b19b4048942df209d4ee4516 schema:name readcube_id
77 schema:value f1c68c5e47ccbc4344f368a157b61adb89f63456e6f139511e5284c53836aeb4
78 rdf:type schema:PropertyValue
79 N70a8568e7c954d0d993dbbfe79706778 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N857e51020d58420b8492ad86821e89a5 rdf:first N0100519298b54cba844fed94a297280d
82 rdf:rest Nc3fa6dfca1f14df88ce2ae290446b5ea
83 Naf7e80f4de424cb88d7eb1e6baa705f2 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
84 schema:familyName Li
85 schema:givenName You-Rong
86 rdf:type schema:Person
87 Naf96b53b0aa44098987ff869ed90bd43 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
88 schema:familyName Liu
89 schema:givenName Qiu-Sheng
90 rdf:type schema:Person
91 Nb771b5eaa57a41f8aecf2740f84812dc rdf:first N49db8b4f5d2f41238fd26a99f2c24f05
92 rdf:rest N6053fc4608ee4bb5b34bfca5da101323
93 Nb7c407c35be34b3cb439939d06568081 schema:name dimensions_id
94 schema:value pub.1112673514
95 rdf:type schema:PropertyValue
96 Nc3fa6dfca1f14df88ce2ae290446b5ea rdf:first Naf96b53b0aa44098987ff869ed90bd43
97 rdf:rest rdf:nil
98 Nf075c551dedd4a56a3125329cf15625e schema:name doi
99 schema:value 10.1007/s12217-019-9694-1
100 rdf:type schema:PropertyValue
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
105 schema:name Interdisciplinary Engineering
106 rdf:type schema:DefinedTerm
107 sg:journal.1026232 schema:issn 0938-0108
108 1875-0494
109 schema:name Microgravity Science and Technology
110 rdf:type schema:Periodical
111 sg:pub.10.1007/bf02870377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010651481
112 https://doi.org/10.1007/bf02870377
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12217-010-9200-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012234011
115 https://doi.org/10.1007/s12217-010-9200-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12217-010-9224-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036571455
118 https://doi.org/10.1007/s12217-010-9224-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12217-013-9354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005670497
121 https://doi.org/10.1007/s12217-013-9354-9
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12217-015-9426-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027098941
124 https://doi.org/10.1007/s12217-015-9426-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s12217-018-9645-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105731596
127 https://doi.org/10.1007/s12217-018-9645-2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1016/s1672-6529(09)60221-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002266832
130 https://doi.org/10.1016/s1672-6529(09)60221-3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/39827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037847007
133 https://doi.org/10.1038/39827
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/srep08614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034501869
136 https://doi.org/10.1038/srep08614
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/cphc.200800098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045342591
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0021-9797(77)90396-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016062873
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.applthermaleng.2006.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013692866
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ces.2011.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043452343
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.colsurfa.2007.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001716512
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.colsurfa.2008.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029087895
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.colsurfa.2011.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684950
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.energy.2010.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033482593
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.expthermflusci.2018.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105699459
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040566474
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050768315
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026643091
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040089215
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026160067
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085858859
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jcis.2016.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020470748
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.rser.2015.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047677722
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0017-9310(00)00086-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032992109
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1017/s0022112008005004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053803414
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1017/s0022112010005446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054074122
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/acs.chemrev.5b00511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085203
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/jp0118322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056046586
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/la047528s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056147125
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/la053450j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056149971
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/la303916u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056157112
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/la8012206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056162937
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.2789402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057867264
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.3121214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057913393
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.5006707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099673282
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/15567260701333109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032556317
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.105.136102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757477
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1615/interfacphenomheattransfer.2015013344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068143175
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.190737.b schema:alternateName Chongqing University
203 schema:name Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
206 schema:name Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...