Thermocapillary Convection with Phase Transition in the 3D Channel in a Weak Gravity Field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

V. B. Bekezhanova, O. N. Goncharova

ABSTRACT

The regimes of joint flows of the evaporating liquid and vapor-gas mixture in a 3D rectangular channel are studied with the help of a partially invariant solution for the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas–vapor phase are additionally taken into account in the governing equations and under interface conditions. A numerical simulation of the 3D fluid flows is carried out for the liquid–gas system like ethanol–nitrogen and HFE-7100–nitrogen under microgravity conditions. The influence of the thermal load, liquid layer thickness and heat-transfer liquid type on the structure of the fluid flows and evaporation characteristics is investigated. The solution allows one to describe the formation of longitudinal thermocapillary rolls observed in the experiments. The evaporative mass flow rate depends essentially on the thermophysical properties of the working liquid. Spatial size and a shape of thermal patterns are determined by the applied thermal load and they can be varied with the change in the liquid layer thickness. Topological structure of the flows (double or quadruple vortex composition) is defined by the combined influence of the thermocapillary and convective mechanisms and phase transition effects. The results discussed in the paper provide motivation for the development of a classification of the 3D flow regimes similar to the Napolitano’s classification for 2D flows. More... »

PAGES

1-20

References to SciGraph publications

  • 2011-08. Change of the types of instability of a steady two-layer flow in an inclined channel in FLUID DYNAMICS
  • 2014-03. Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface in JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
  • 2013-09. Measurement of the evaporation mass flow rate in a horizontal liquid layer partly opened into flowing gas in TECHNICAL PHYSICS LETTERS
  • 2018-05. Effect of Surface Excess Energy Transport on the Rupture of an Evaporating Film in MICROGRAVITY SCIENCE AND TECHNOLOGY
  • 1966-05. Thermocapillary convection in a horizontal layer of liquid in JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
  • 2016-10. Effect of Surface Evaporation on Steady Thermocapillary Convection in an Annular Pool in MICROGRAVITY SCIENCE AND TECHNOLOGY
  • 2018-08. Influence of Gravity on the Stability of Evaporative Convection Regimes in MICROGRAVITY SCIENCE AND TECHNOLOGY
  • 2015-09. Modeling of two-layer liquid-gas flow with account for evaporation in THERMOPHYSICS AND AEROMECHANICS
  • 2013-02. Enhancement of Evaporation in Presence of Induced Thermocapillary Convection in a Non-Isothermal Liquid Bridge in MICROGRAVITY SCIENCE AND TECHNOLOGY
  • 2017-02. Marangoni Convection Instabilities Induced by Evaporation of Liquid Layer in an Open Rectangular Pool in MICROGRAVITY SCIENCE AND TECHNOLOGY
  • 2009-08. Experimental Study on the Combined Evaporation Effect and Thermocapillary Convection in a Thin Liquid Layer in MICROGRAVITY SCIENCE AND TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12217-019-9691-4

    DOI

    http://dx.doi.org/10.1007/s12217-019-9691-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113041374


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Differential Equations of Mechanics, Institute of Computational Modelling SB RAS, 660036, Akademgorodok, 50/44, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bekezhanova", 
            "givenName": "V. B.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Altai State University", 
              "id": "https://www.grid.ac/institutes/grid.77225.35", 
              "name": [
                "Altai State University, 656049, pr Lenina 61, Barnaul, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goncharova", 
            "givenName": "O. N.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.expthermflusci.2010.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002292391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00914697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003727141", 
              "https://doi.org/10.1007/bf00914697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010915961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-016-9528-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021043976", 
              "https://doi.org/10.1007/s12217-016-9528-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-016-9528-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021043976", 
              "https://doi.org/10.1007/s12217-016-9528-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-016-9510-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024804584", 
              "https://doi.org/10.1007/s12217-016-9510-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-016-9510-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024804584", 
              "https://doi.org/10.1007/s12217-016-9510-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021894414020072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028002289", 
              "https://doi.org/10.1134/s0021894414020072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-012-9319-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031620185", 
              "https://doi.org/10.1007/s12217-012-9319-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785013090095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037154715", 
              "https://doi.org/10.1134/s1063785013090095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0094-5765(80)90036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043030155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0094-5765(80)90036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043030155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-009-9123-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047258468", 
              "https://doi.org/10.1007/s12217-009-9123-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-009-9123-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047258468", 
              "https://doi.org/10.1007/s12217-009-9123-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s001546281104003x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048427068", 
              "https://doi.org/10.1134/s001546281104003x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s086986431505011x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053655137", 
              "https://doi.org/10.1134/s086986431505011x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0169-5983/48/6/061408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059039743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/754/3/032008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059168917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4005708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062146041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4024354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062149672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3367/ufnr.0168.199803b.0259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071219290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1615/interfacphenomheattransfer.2017019451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085520263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-017-9585-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099720894", 
              "https://doi.org/10.1007/s12217-017-9585-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-018-9628-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105310633", 
              "https://doi.org/10.1007/s12217-018-9628-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12217-018-9628-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105310633", 
              "https://doi.org/10.1007/s12217-018-9628-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-27", 
        "datePublishedReg": "2019-03-27", 
        "description": "The regimes of joint flows of the evaporating liquid and vapor-gas mixture in a 3D rectangular channel are studied with the help of a partially invariant solution for the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas\u2013vapor phase are additionally taken into account in the governing equations and under interface conditions. A numerical simulation of the 3D fluid flows is carried out for the liquid\u2013gas system like ethanol\u2013nitrogen and HFE-7100\u2013nitrogen under microgravity conditions. The influence of the thermal load, liquid layer thickness and heat-transfer liquid type on the structure of the fluid flows and evaporation characteristics is investigated. The solution allows one to describe the formation of longitudinal thermocapillary rolls observed in the experiments. The evaporative mass flow rate depends essentially on the thermophysical properties of the working liquid. Spatial size and a shape of thermal patterns are determined by the applied thermal load and they can be varied with the change in the liquid layer thickness. Topological structure of the flows (double or quadruple vortex composition) is defined by the combined influence of the thermocapillary and convective mechanisms and phase transition effects. The results discussed in the paper provide motivation for the development of a classification of the 3D flow regimes similar to the Napolitano\u2019s classification for 2D flows.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12217-019-9691-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1026232", 
            "issn": [
              "0938-0108", 
              "1875-0494"
            ], 
            "name": "Microgravity Science and Technology", 
            "type": "Periodical"
          }
        ], 
        "name": "Thermocapillary Convection with Phase Transition in the 3D Channel in a Weak Gravity Field", 
        "pagination": "1-20", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0ef9fca11a217b2a7676ca0f527415583b00ac851aa7916ef513559684c297ca"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12217-019-9691-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113041374"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12217-019-9691-4", 
          "https://app.dimensions.ai/details/publication/pub.1113041374"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78944_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12217-019-9691-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9691-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9691-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9691-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9691-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      44 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12217-019-9691-4 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nb7295a277fca47eebe02401cdeb3381b
    4 schema:citation sg:pub.10.1007/bf00914697
    5 sg:pub.10.1007/s12217-009-9123-y
    6 sg:pub.10.1007/s12217-012-9319-4
    7 sg:pub.10.1007/s12217-016-9510-0
    8 sg:pub.10.1007/s12217-016-9528-3
    9 sg:pub.10.1007/s12217-017-9585-2
    10 sg:pub.10.1007/s12217-018-9628-3
    11 sg:pub.10.1134/s001546281104003x
    12 sg:pub.10.1134/s0021894414020072
    13 sg:pub.10.1134/s086986431505011x
    14 sg:pub.10.1134/s1063785013090095
    15 https://doi.org/10.1016/0094-5765(80)90036-3
    16 https://doi.org/10.1016/j.expthermflusci.2010.08.001
    17 https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.038
    18 https://doi.org/10.1088/0169-5983/48/6/061408
    19 https://doi.org/10.1088/1742-6596/754/3/032008
    20 https://doi.org/10.1115/1.4005708
    21 https://doi.org/10.1115/1.4024354
    22 https://doi.org/10.1615/interfacphenomheattransfer.2017019451
    23 https://doi.org/10.3367/ufnr.0168.199803b.0259
    24 schema:datePublished 2019-03-27
    25 schema:datePublishedReg 2019-03-27
    26 schema:description The regimes of joint flows of the evaporating liquid and vapor-gas mixture in a 3D rectangular channel are studied with the help of a partially invariant solution for the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas–vapor phase are additionally taken into account in the governing equations and under interface conditions. A numerical simulation of the 3D fluid flows is carried out for the liquid–gas system like ethanol–nitrogen and HFE-7100–nitrogen under microgravity conditions. The influence of the thermal load, liquid layer thickness and heat-transfer liquid type on the structure of the fluid flows and evaporation characteristics is investigated. The solution allows one to describe the formation of longitudinal thermocapillary rolls observed in the experiments. The evaporative mass flow rate depends essentially on the thermophysical properties of the working liquid. Spatial size and a shape of thermal patterns are determined by the applied thermal load and they can be varied with the change in the liquid layer thickness. Topological structure of the flows (double or quadruple vortex composition) is defined by the combined influence of the thermocapillary and convective mechanisms and phase transition effects. The results discussed in the paper provide motivation for the development of a classification of the 3D flow regimes similar to the Napolitano’s classification for 2D flows.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf sg:journal.1026232
    31 schema:name Thermocapillary Convection with Phase Transition in the 3D Channel in a Weak Gravity Field
    32 schema:pagination 1-20
    33 schema:productId N4e160e6033a94a31ba190e57f8d5a241
    34 Nbaa6a167be0a41b7b1647b62d3f6834d
    35 Ndf3fc243a31347f792b963e13497e496
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113041374
    37 https://doi.org/10.1007/s12217-019-9691-4
    38 schema:sdDatePublished 2019-04-11T13:18
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N691784ed7d2c4692956f8969260d036f
    41 schema:url https://link.springer.com/10.1007%2Fs12217-019-9691-4
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N1d9c4054487f4869822eb30f5a6599c2 rdf:first N2d87004b56c148cba88f7c8fde25f4cb
    46 rdf:rest rdf:nil
    47 N2d87004b56c148cba88f7c8fde25f4cb schema:affiliation https://www.grid.ac/institutes/grid.77225.35
    48 schema:familyName Goncharova
    49 schema:givenName O. N.
    50 rdf:type schema:Person
    51 N4e160e6033a94a31ba190e57f8d5a241 schema:name doi
    52 schema:value 10.1007/s12217-019-9691-4
    53 rdf:type schema:PropertyValue
    54 N5df15f71a0144c24b1ed0159fb28f384 schema:affiliation N87b40dbaa04b4305a8140ec5eecf80fc
    55 schema:familyName Bekezhanova
    56 schema:givenName V. B.
    57 rdf:type schema:Person
    58 N691784ed7d2c4692956f8969260d036f schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N87b40dbaa04b4305a8140ec5eecf80fc schema:name Department of Differential Equations of Mechanics, Institute of Computational Modelling SB RAS, 660036, Akademgorodok, 50/44, Krasnoyarsk, Russia
    61 rdf:type schema:Organization
    62 Nb7295a277fca47eebe02401cdeb3381b rdf:first N5df15f71a0144c24b1ed0159fb28f384
    63 rdf:rest N1d9c4054487f4869822eb30f5a6599c2
    64 Nbaa6a167be0a41b7b1647b62d3f6834d schema:name readcube_id
    65 schema:value 0ef9fca11a217b2a7676ca0f527415583b00ac851aa7916ef513559684c297ca
    66 rdf:type schema:PropertyValue
    67 Ndf3fc243a31347f792b963e13497e496 schema:name dimensions_id
    68 schema:value pub.1113041374
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Engineering
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Interdisciplinary Engineering
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1026232 schema:issn 0938-0108
    77 1875-0494
    78 schema:name Microgravity Science and Technology
    79 rdf:type schema:Periodical
    80 sg:pub.10.1007/bf00914697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003727141
    81 https://doi.org/10.1007/bf00914697
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/s12217-009-9123-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047258468
    84 https://doi.org/10.1007/s12217-009-9123-y
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/s12217-012-9319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031620185
    87 https://doi.org/10.1007/s12217-012-9319-4
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/s12217-016-9510-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024804584
    90 https://doi.org/10.1007/s12217-016-9510-0
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s12217-016-9528-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021043976
    93 https://doi.org/10.1007/s12217-016-9528-3
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s12217-017-9585-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099720894
    96 https://doi.org/10.1007/s12217-017-9585-2
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s12217-018-9628-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105310633
    99 https://doi.org/10.1007/s12217-018-9628-3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1134/s001546281104003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048427068
    102 https://doi.org/10.1134/s001546281104003x
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1134/s0021894414020072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028002289
    105 https://doi.org/10.1134/s0021894414020072
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1134/s086986431505011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053655137
    108 https://doi.org/10.1134/s086986431505011x
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1134/s1063785013090095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037154715
    111 https://doi.org/10.1134/s1063785013090095
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0094-5765(80)90036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043030155
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.expthermflusci.2010.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292391
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010915961
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1088/0169-5983/48/6/061408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059039743
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1088/1742-6596/754/3/032008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059168917
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1115/1.4005708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062146041
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1115/1.4024354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149672
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1615/interfacphenomheattransfer.2017019451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085520263
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.3367/ufnr.0168.199803b.0259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071219290
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.77225.35 schema:alternateName Altai State University
    132 schema:name Altai State University, 656049, pr Lenina 61, Barnaul, Russia
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...