Numerical Simulation of Quasi-Static Bubble Formation from a Submerged Orifice by the Axisymmetric VOSET Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-06

AUTHORS

Tai Wang, Hui-Xiong Li, Jian-Fu Zhao, Kai-Kai Guo

ABSTRACT

In order to investigate the dynamics of quasi-static bubble formation from a submerged orifice, this paper developed an axisymmetric VOSET method with continuum surface force (CSF) model which can accurately capture the moving phase interface of gas-liquid flow. Test case shows that numerical results are in good agreement with experimental results from the literature. The effects of gas flow rate, orifice size, surface tension, contact angle, liquid density, and gravitational acceleration on bubble shape, departure time and departure volume are investigated and analyzed. It is found that increase in orifice size, surface tension, and contact angle results in the increase in the capillary force resisting bubble detachment, which leads to larger departure time and departure volume. But there is a critical contact angle, and contact angle has no significance effect on the process of bubble formation and detachment, when it is smaller than the critical value. Buoyancy force promoting bubble detachment increases with the increase of liquid density and gravitational acceleration, which results in smaller departure time and departure volume. Also, the forming process of the neck shape of bubble bottom at the bubble detachment stage is observed, and the results show that the position of the smallest part of the neck approximately equals to the orifice radius Rc. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9690-5

DOI

http://dx.doi.org/10.1007/s12217-019-9690-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112587685


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North China Electric Power University", 
          "id": "https://www.grid.ac/institutes/grid.261049.8", 
          "name": [
            "School of Energy, Power and Mechanical Engineering, North China Electric Power University, 071003, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Tai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory of Multiphase Flow in Power Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hui-Xiong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "CAS Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jian-Fu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory of Multiphase Flow in Power Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Kai-Kai", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2008.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000678915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2012.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000921617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004410393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2010.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009402884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011464893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2000.6537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012194210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014128831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(81)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016212158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(01)00241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016431543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2007.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016586151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.14896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017202735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2011.561079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018064657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112093003015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018521417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(92)90240-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019586095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2013.869459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019808713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020210190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2013.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021553588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2010.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023441829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(88)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024042944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2006.12.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024836341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027348192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02726351.2015.1017033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038006201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-014-9409-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039364344", 
          "https://doi.org/10.1007/s12217-014-9409-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2015.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040085574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450850301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450850301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045053376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9490-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046119242", 
          "https://doi.org/10.1007/s12217-016-9490-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-9322(99)00076-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050933322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051206389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9495-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051278938", 
          "https://doi.org/10.1007/s12217-016-9495-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3152437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057916305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2017.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9549-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085569884", 
          "https://doi.org/10.1007/s12217-017-9549-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9549-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085569884", 
          "https://doi.org/10.1007/s12217-017-9549-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9605-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101537542", 
          "https://doi.org/10.1007/s12217-018-9605-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9605-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101537542", 
          "https://doi.org/10.1007/s12217-018-9605-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9605-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101537542", 
          "https://doi.org/10.1007/s12217-018-9605-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9605-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101537542", 
          "https://doi.org/10.1007/s12217-018-9605-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2018.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103687029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9629-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104349384", 
          "https://doi.org/10.1007/s12217-018-9629-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9634-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105086734", 
          "https://doi.org/10.1007/s12217-018-9634-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9634-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105086734", 
          "https://doi.org/10.1007/s12217-018-9634-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "In order to investigate the dynamics of quasi-static bubble formation from a submerged orifice, this paper developed an axisymmetric VOSET method with continuum surface force (CSF) model which can accurately capture the moving phase interface of gas-liquid flow. Test case shows that numerical results are in good agreement with experimental results from the literature. The effects of gas flow rate, orifice size, surface tension, contact angle, liquid density, and gravitational acceleration on bubble shape, departure time and departure volume are investigated and analyzed. It is found that increase in orifice size, surface tension, and contact angle results in the increase in the capillary force resisting bubble detachment, which leads to larger departure time and departure volume. But there is a critical contact angle, and contact angle has no significance effect on the process of bubble formation and detachment, when it is smaller than the critical value. Buoyancy force promoting bubble detachment increases with the increase of liquid density and gravitational acceleration, which results in smaller departure time and departure volume. Also, the forming process of the neck shape of bubble bottom at the bubble detachment stage is observed, and the results show that the position of the smallest part of the neck approximately equals to the orifice radius Rc.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9690-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Numerical Simulation of Quasi-Static Bubble Formation from a Submerged Orifice by the Axisymmetric VOSET Method", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7be81f77c6099baf97cbff49ce1bd50276e08310985d5132e9678b4c4944d82"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9690-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112587685"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9690-5", 
      "https://app.dimensions.ai/details/publication/pub.1112587685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45345_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9690-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9690-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9690-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9690-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9690-5'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      62 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9690-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf78332ea375f441dba706e4a80904b43
4 schema:citation sg:pub.10.1007/s12217-014-9409-6
5 sg:pub.10.1007/s12217-016-9490-0
6 sg:pub.10.1007/s12217-016-9495-8
7 sg:pub.10.1007/s12217-017-9549-6
8 sg:pub.10.1007/s12217-018-9605-x
9 sg:pub.10.1007/s12217-018-9629-2
10 sg:pub.10.1007/s12217-018-9634-5
11 https://doi.org/10.1002/aic.14896
12 https://doi.org/10.1002/cjce.5450850301
13 https://doi.org/10.1006/jcph.2000.6537
14 https://doi.org/10.1016/0021-9991(81)90145-5
15 https://doi.org/10.1016/0021-9991(88)90002-2
16 https://doi.org/10.1016/0021-9991(92)90240-y
17 https://doi.org/10.1016/j.ces.2006.12.061
18 https://doi.org/10.1016/j.ces.2007.08.061
19 https://doi.org/10.1016/j.ces.2012.01.012
20 https://doi.org/10.1016/j.ces.2012.01.013
21 https://doi.org/10.1016/j.ces.2013.10.009
22 https://doi.org/10.1016/j.ces.2018.04.048
23 https://doi.org/10.1016/j.colsurfa.2010.07.009
24 https://doi.org/10.1016/j.euromechflu.2015.01.003
25 https://doi.org/10.1016/j.expthermflusci.2010.11.015
26 https://doi.org/10.1016/j.expthermflusci.2012.06.005
27 https://doi.org/10.1016/j.expthermflusci.2015.03.023
28 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.002
29 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.030
30 https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.019
31 https://doi.org/10.1016/j.ijmultiphaseflow.2008.07.007
32 https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005
33 https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.008
34 https://doi.org/10.1016/j.oceaneng.2017.04.023
35 https://doi.org/10.1016/s0009-2509(01)00241-x
36 https://doi.org/10.1016/s0301-9322(99)00076-2
37 https://doi.org/10.1017/s0022112093003015
38 https://doi.org/10.1063/1.3152437
39 https://doi.org/10.1080/02726351.2015.1017033
40 https://doi.org/10.1080/10407782.2011.561079
41 https://doi.org/10.1080/10407782.2013.869459
42 schema:datePublished 2019-03-06
43 schema:datePublishedReg 2019-03-06
44 schema:description In order to investigate the dynamics of quasi-static bubble formation from a submerged orifice, this paper developed an axisymmetric VOSET method with continuum surface force (CSF) model which can accurately capture the moving phase interface of gas-liquid flow. Test case shows that numerical results are in good agreement with experimental results from the literature. The effects of gas flow rate, orifice size, surface tension, contact angle, liquid density, and gravitational acceleration on bubble shape, departure time and departure volume are investigated and analyzed. It is found that increase in orifice size, surface tension, and contact angle results in the increase in the capillary force resisting bubble detachment, which leads to larger departure time and departure volume. But there is a critical contact angle, and contact angle has no significance effect on the process of bubble formation and detachment, when it is smaller than the critical value. Buoyancy force promoting bubble detachment increases with the increase of liquid density and gravitational acceleration, which results in smaller departure time and departure volume. Also, the forming process of the neck shape of bubble bottom at the bubble detachment stage is observed, and the results show that the position of the smallest part of the neck approximately equals to the orifice radius Rc.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1026232
49 schema:name Numerical Simulation of Quasi-Static Bubble Formation from a Submerged Orifice by the Axisymmetric VOSET Method
50 schema:pagination 1-14
51 schema:productId N1083bb1397384a7c9b65a97a47db3add
52 N3550f7a9f1b4402a85db6b3902f51ccb
53 N4fd20acd99ba443985d1db45de0f5875
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112587685
55 https://doi.org/10.1007/s12217-019-9690-5
56 schema:sdDatePublished 2019-04-11T11:10
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N99bb6189a8524f69a91bd91e6296be30
59 schema:url https://link.springer.com/10.1007%2Fs12217-019-9690-5
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N046ba0185740455e877b2378a8668c48 schema:affiliation https://www.grid.ac/institutes/grid.261049.8
64 schema:familyName Wang
65 schema:givenName Tai
66 rdf:type schema:Person
67 N1083bb1397384a7c9b65a97a47db3add schema:name readcube_id
68 schema:value f7be81f77c6099baf97cbff49ce1bd50276e08310985d5132e9678b4c4944d82
69 rdf:type schema:PropertyValue
70 N3550f7a9f1b4402a85db6b3902f51ccb schema:name dimensions_id
71 schema:value pub.1112587685
72 rdf:type schema:PropertyValue
73 N3a081d99369a4964a55660db8edd1498 rdf:first N3ea09e3eb1154e4fb9c530228ca4b83c
74 rdf:rest N5940a6692b24401ba2e5d80ff14f0a19
75 N3ea09e3eb1154e4fb9c530228ca4b83c schema:affiliation https://www.grid.ac/institutes/grid.43169.39
76 schema:familyName Li
77 schema:givenName Hui-Xiong
78 rdf:type schema:Person
79 N4fd20acd99ba443985d1db45de0f5875 schema:name doi
80 schema:value 10.1007/s12217-019-9690-5
81 rdf:type schema:PropertyValue
82 N5940a6692b24401ba2e5d80ff14f0a19 rdf:first N97c2bc70c80447acbf1d3a299d1ce534
83 rdf:rest N60ca7367408b4142aed23e8c95f4c24e
84 N60ca7367408b4142aed23e8c95f4c24e rdf:first N9fad311cb940467a8de8bf925afdb5ce
85 rdf:rest rdf:nil
86 N97c2bc70c80447acbf1d3a299d1ce534 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
87 schema:familyName Zhao
88 schema:givenName Jian-Fu
89 rdf:type schema:Person
90 N99bb6189a8524f69a91bd91e6296be30 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N9fad311cb940467a8de8bf925afdb5ce schema:affiliation https://www.grid.ac/institutes/grid.43169.39
93 schema:familyName Guo
94 schema:givenName Kai-Kai
95 rdf:type schema:Person
96 Nf78332ea375f441dba706e4a80904b43 rdf:first N046ba0185740455e877b2378a8668c48
97 rdf:rest N3a081d99369a4964a55660db8edd1498
98 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
99 schema:name Chemical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Chemistry (incl. Structural)
103 rdf:type schema:DefinedTerm
104 sg:journal.1026232 schema:issn 0938-0108
105 1875-0494
106 schema:name Microgravity Science and Technology
107 rdf:type schema:Periodical
108 sg:pub.10.1007/s12217-014-9409-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039364344
109 https://doi.org/10.1007/s12217-014-9409-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12217-016-9490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046119242
112 https://doi.org/10.1007/s12217-016-9490-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12217-016-9495-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051278938
115 https://doi.org/10.1007/s12217-016-9495-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12217-017-9549-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085569884
118 https://doi.org/10.1007/s12217-017-9549-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12217-018-9605-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101537542
121 https://doi.org/10.1007/s12217-018-9605-x
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12217-018-9629-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104349384
124 https://doi.org/10.1007/s12217-018-9629-2
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s12217-018-9634-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105086734
127 https://doi.org/10.1007/s12217-018-9634-5
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/aic.14896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017202735
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/cjce.5450850301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723423
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1006/jcph.2000.6537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012194210
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0021-9991(81)90145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016212158
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0021-9991(88)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042944
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0021-9991(92)90240-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019586095
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ces.2006.12.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024836341
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ces.2007.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016586151
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ces.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045053376
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ces.2012.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000921617
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ces.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021553588
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ces.2018.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103687029
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.colsurfa.2010.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009402884
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.euromechflu.2015.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040085574
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.expthermflusci.2010.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023441829
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.expthermflusci.2012.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004410393
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.expthermflusci.2015.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027348192
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051206389
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011464893
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067342
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijmultiphaseflow.2008.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000678915
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014128831
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020210190
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.oceaneng.2017.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085050780
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0009-2509(01)00241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016431543
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0301-9322(99)00076-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050933322
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1017/s0022112093003015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018521417
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.3152437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057916305
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/02726351.2015.1017033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038006201
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/10407782.2011.561079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064657
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/10407782.2013.869459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019808713
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.261049.8 schema:alternateName North China Electric Power University
192 schema:name School of Energy, Power and Mechanical Engineering, North China Electric Power University, 071003, Baoding, China
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
195 schema:name State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049, Xi’an, China
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
198 schema:name CAS Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...