Heat Transfer in a Closed Domain of Inhomogeneous Supercritical Fluid under Weightlessness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-11

AUTHORS

Gorbunov Alexander, Emelyanov Victor, Lednev Andrey

ABSTRACT

The process of heat transfer in a closed domain of temperature-density inhomogeneous supercritical fluid (SCF) heated or cooled from the boundaries under weightlessness is studied numerically. The calculations near the thermodynamic critical point are carried out with the use of 1D equations of Navier-Stokes, mass conservation, energy balance, and van der Waals equation of state. It is obtained that when the critical point approaches the characteristic time of “piston effect”, τPE, in inhomogeneous SCF significantly increases in comparison with the homogeneous case. The larger temperature-density inhomogeneity and the closer the critical point, the longer time of “piston effect”. In addition the heating of the fluid causes the temperature-density inhomogeneity to be stronger, whereas cooling leads to the weakening of the inhomogeneity. More... »

PAGES

1-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9689-y

DOI

http://dx.doi.org/10.1007/s12217-019-9689-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112685386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Problems in Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.435056.1", 
          "name": [
            "Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alexander", 
        "givenName": "Gorbunov", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Problems in Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.435056.1", 
          "name": [
            "Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Victor", 
        "givenName": "Emelyanov", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Problems in Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.435056.1", 
          "name": [
            "Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrey", 
        "givenName": "Lednev", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1051/jp4:2001603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056984024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.2256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.2256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.5556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.5556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.5665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.5665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.056317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.056317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9546-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085382110", 
          "https://doi.org/10.1007/s12217-017-9546-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9546-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085382110", 
          "https://doi.org/10.1007/s12217-017-9546-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/891/1/012057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092641810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9574-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099699138", 
          "https://doi.org/10.1007/s12217-017-9574-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-11", 
    "datePublishedReg": "2019-03-11", 
    "description": "The process of heat transfer in a closed domain of temperature-density inhomogeneous supercritical fluid (SCF) heated or cooled from the boundaries under weightlessness is studied numerically. The calculations near the thermodynamic critical point are carried out with the use of 1D equations of Navier-Stokes, mass conservation, energy balance, and van der Waals equation of state. It is obtained that when the critical point approaches the characteristic time of \u201cpiston effect\u201d, \u03c4PE, in inhomogeneous SCF significantly increases in comparison with the homogeneous case. The larger temperature-density inhomogeneity and the closer the critical point, the longer time of \u201cpiston effect\u201d. In addition the heating of the fluid causes the temperature-density inhomogeneity to be stronger, whereas cooling leads to the weakening of the inhomogeneity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9689-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Heat Transfer in a Closed Domain of Inhomogeneous Supercritical Fluid under Weightlessness", 
    "pagination": "1-5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3e456fdb35e3197fe5187f0616224c895f04a2522e193030e049210a2208613"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9689-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112685386"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9689-y", 
      "https://app.dimensions.ai/details/publication/pub.1112685386"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99320_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9689-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9689-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9689-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9689-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9689-y'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      32 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9689-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N0f0c2f4f49a84b939aac17a10726296c
4 schema:citation sg:pub.10.1007/s12217-017-9546-9
5 sg:pub.10.1007/s12217-017-9574-5
6 https://doi.org/10.1051/jp4:2001603
7 https://doi.org/10.1088/1742-6596/891/1/012057
8 https://doi.org/10.1103/physreva.41.2256
9 https://doi.org/10.1103/physreve.51.5556
10 https://doi.org/10.1103/physreve.57.5665
11 https://doi.org/10.1103/physreve.75.056317
12 schema:datePublished 2019-03-11
13 schema:datePublishedReg 2019-03-11
14 schema:description The process of heat transfer in a closed domain of temperature-density inhomogeneous supercritical fluid (SCF) heated or cooled from the boundaries under weightlessness is studied numerically. The calculations near the thermodynamic critical point are carried out with the use of 1D equations of Navier-Stokes, mass conservation, energy balance, and van der Waals equation of state. It is obtained that when the critical point approaches the characteristic time of “piston effect”, τPE, in inhomogeneous SCF significantly increases in comparison with the homogeneous case. The larger temperature-density inhomogeneity and the closer the critical point, the longer time of “piston effect”. In addition the heating of the fluid causes the temperature-density inhomogeneity to be stronger, whereas cooling leads to the weakening of the inhomogeneity.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf sg:journal.1026232
19 schema:name Heat Transfer in a Closed Domain of Inhomogeneous Supercritical Fluid under Weightlessness
20 schema:pagination 1-5
21 schema:productId N31afaeb076d542f6960dd2dfeffbde73
22 N5688868a926a43b0a29290078d266601
23 Nf27fb47d05b147a88ca94ce3626c7cdd
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112685386
25 https://doi.org/10.1007/s12217-019-9689-y
26 schema:sdDatePublished 2019-04-11T11:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N257d9580d0fe46f494e359fc9da10d67
29 schema:url https://link.springer.com/10.1007%2Fs12217-019-9689-y
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N04ac563bb65a4e66839f5c7e1584b419 schema:affiliation https://www.grid.ac/institutes/grid.435056.1
34 schema:familyName Victor
35 schema:givenName Emelyanov
36 rdf:type schema:Person
37 N0eae5e72e14b4617a46d73120b3432a9 rdf:first N66a2b0b522d242e5977f2294f04ba83c
38 rdf:rest rdf:nil
39 N0f0c2f4f49a84b939aac17a10726296c rdf:first Nee129ad043564d7ba60eab7d9965bf00
40 rdf:rest N63c4eec0e63f43ab83f4ff18b55a58f1
41 N257d9580d0fe46f494e359fc9da10d67 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N31afaeb076d542f6960dd2dfeffbde73 schema:name dimensions_id
44 schema:value pub.1112685386
45 rdf:type schema:PropertyValue
46 N5688868a926a43b0a29290078d266601 schema:name doi
47 schema:value 10.1007/s12217-019-9689-y
48 rdf:type schema:PropertyValue
49 N63c4eec0e63f43ab83f4ff18b55a58f1 rdf:first N04ac563bb65a4e66839f5c7e1584b419
50 rdf:rest N0eae5e72e14b4617a46d73120b3432a9
51 N66a2b0b522d242e5977f2294f04ba83c schema:affiliation https://www.grid.ac/institutes/grid.435056.1
52 schema:familyName Andrey
53 schema:givenName Lednev
54 rdf:type schema:Person
55 Nee129ad043564d7ba60eab7d9965bf00 schema:affiliation https://www.grid.ac/institutes/grid.435056.1
56 schema:familyName Alexander
57 schema:givenName Gorbunov
58 rdf:type schema:Person
59 Nf27fb47d05b147a88ca94ce3626c7cdd schema:name readcube_id
60 schema:value c3e456fdb35e3197fe5187f0616224c895f04a2522e193030e049210a2208613
61 rdf:type schema:PropertyValue
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
66 schema:name Interdisciplinary Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1026232 schema:issn 0938-0108
69 1875-0494
70 schema:name Microgravity Science and Technology
71 rdf:type schema:Periodical
72 sg:pub.10.1007/s12217-017-9546-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085382110
73 https://doi.org/10.1007/s12217-017-9546-9
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s12217-017-9574-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099699138
76 https://doi.org/10.1007/s12217-017-9574-5
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1051/jp4:2001603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056984024
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1088/1742-6596/891/1/012057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092641810
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.41.2256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480978
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreve.51.5556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717954
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physreve.57.5665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722322
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physreve.75.056317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735978
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.435056.1 schema:alternateName Institute for Problems in Mechanics
91 schema:name Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...