Pulsating Heat Pipe Simulations: Impact of PHP Orientation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-19

AUTHORS

Iaroslav Nekrashevych, Vadim S. Nikolayev

ABSTRACT

The pulsating (called also oscillating) heat pipe (PHP) is a simple capillary tube bent in meander and filled with a two-phase fluid. We discuss numerical simulations of the 10-turn copper-water PHP under vertical favorable (bottom-heated), vertical unfavorable (top-heated), and horizontal orientations. Within the present approach, the horizontal orientation is equivalent to the microgravity conditions. The simulations are performed with the in-house CASCO software. The time-averaged spatial distribution of the liquid plugs inside the PHP is influenced by gravity. This affects the overall PHP performance. We show that, independently of the PHP orientation, contribution of the latent heat transfer is large with respect to the sensible heat transfer. We discuss the phenomena occurring inside the PHP during startup and the stable regimes (intermittent and continuous oscillations followed by dryout). More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9684-3

DOI

http://dx.doi.org/10.1007/s12217-019-9684-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112227881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de Physique de l'Etat Condens\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.462531.7", 
          "name": [
            "Service de Physique de l\u2019Etat Condens\u00e9, CEA, CNRS, Universit\u00e9 Paris\u2013Saclay, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nekrashevych", 
        "givenName": "Iaroslav", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Physique de l'Etat Condens\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.462531.7", 
          "name": [
            "Service de Physique de l\u2019Etat Condens\u00e9, CEA, CNRS, Universit\u00e9 Paris\u2013Saclay, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolayev", 
        "givenName": "Vadim S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005407527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2015.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005540250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02945972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485186", 
          "https://doi.org/10.1007/bf02945972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02945972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485186", 
          "https://doi.org/10.1007/bf02945972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2009.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018617440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2013.09.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030986879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043581592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-011-9293-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048308588", 
          "https://doi.org/10.1007/s12217-011-9293-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1409266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062069480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4003759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062144102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083699143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511803260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098677710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789813234406_0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104174386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2018.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110762945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-19", 
    "datePublishedReg": "2019-02-19", 
    "description": "The pulsating (called also oscillating) heat pipe (PHP) is a simple capillary tube bent in meander and filled with a two-phase fluid. We discuss numerical simulations of the 10-turn copper-water PHP under vertical favorable (bottom-heated), vertical unfavorable (top-heated), and horizontal orientations. Within the present approach, the horizontal orientation is equivalent to the microgravity conditions. The simulations are performed with the in-house CASCO software. The time-averaged spatial distribution of the liquid plugs inside the PHP is influenced by gravity. This affects the overall PHP performance. We show that, independently of the PHP orientation, contribution of the latent heat transfer is large with respect to the sensible heat transfer. We discuss the phenomena occurring inside the PHP during startup and the stable regimes (intermittent and continuous oscillations followed by dryout).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9684-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Pulsating Heat Pipe Simulations: Impact of PHP Orientation", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa711a577d955928ed637cdfec0c900c320da774c938ade821b6c77faec7c0c6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9684-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112227881"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9684-3", 
      "https://app.dimensions.ai/details/publication/pub.1112227881"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47975_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9684-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9684-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9684-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9684-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9684-3'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      37 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9684-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na13d0b3b2abc4bd4a0fee2ab2cbb6f12
4 schema:citation sg:pub.10.1007/bf02945972
5 sg:pub.10.1007/s12217-011-9293-2
6 https://doi.org/10.1016/j.applthermaleng.2009.12.020
7 https://doi.org/10.1016/j.applthermaleng.2013.09.041
8 https://doi.org/10.1016/j.applthermaleng.2017.02.013
9 https://doi.org/10.1016/j.enconman.2018.12.027
10 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.013
11 https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.043
12 https://doi.org/10.1016/j.ijthermalsci.2015.04.001
13 https://doi.org/10.1017/cbo9780511803260
14 https://doi.org/10.1115/1.1409266
15 https://doi.org/10.1115/1.4003759
16 https://doi.org/10.1142/9789813234406_0001
17 schema:datePublished 2019-02-19
18 schema:datePublishedReg 2019-02-19
19 schema:description The pulsating (called also oscillating) heat pipe (PHP) is a simple capillary tube bent in meander and filled with a two-phase fluid. We discuss numerical simulations of the 10-turn copper-water PHP under vertical favorable (bottom-heated), vertical unfavorable (top-heated), and horizontal orientations. Within the present approach, the horizontal orientation is equivalent to the microgravity conditions. The simulations are performed with the in-house CASCO software. The time-averaged spatial distribution of the liquid plugs inside the PHP is influenced by gravity. This affects the overall PHP performance. We show that, independently of the PHP orientation, contribution of the latent heat transfer is large with respect to the sensible heat transfer. We discuss the phenomena occurring inside the PHP during startup and the stable regimes (intermittent and continuous oscillations followed by dryout).
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf sg:journal.1026232
24 schema:name Pulsating Heat Pipe Simulations: Impact of PHP Orientation
25 schema:pagination 1-8
26 schema:productId Nad1f2c51a392496cab99cab22009e27c
27 Nc26fa38c7dad46c7bdf788e8ea65e233
28 Nd7ee1bfd473e46ab9b29a697509b8628
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112227881
30 https://doi.org/10.1007/s12217-019-9684-3
31 schema:sdDatePublished 2019-04-11T09:11
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nf21da8db92a440ccb9ee691c55dc1fa1
34 schema:url https://link.springer.com/10.1007%2Fs12217-019-9684-3
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N1806cce0aef645a0852835524f16368b rdf:first Nca185282f1b1439bab2b0a76ceb78412
39 rdf:rest rdf:nil
40 Na13d0b3b2abc4bd4a0fee2ab2cbb6f12 rdf:first Nb142424206fd4ef5bcd34d4ace2f976c
41 rdf:rest N1806cce0aef645a0852835524f16368b
42 Nad1f2c51a392496cab99cab22009e27c schema:name readcube_id
43 schema:value aa711a577d955928ed637cdfec0c900c320da774c938ade821b6c77faec7c0c6
44 rdf:type schema:PropertyValue
45 Nb142424206fd4ef5bcd34d4ace2f976c schema:affiliation https://www.grid.ac/institutes/grid.462531.7
46 schema:familyName Nekrashevych
47 schema:givenName Iaroslav
48 rdf:type schema:Person
49 Nc26fa38c7dad46c7bdf788e8ea65e233 schema:name dimensions_id
50 schema:value pub.1112227881
51 rdf:type schema:PropertyValue
52 Nca185282f1b1439bab2b0a76ceb78412 schema:affiliation https://www.grid.ac/institutes/grid.462531.7
53 schema:familyName Nikolayev
54 schema:givenName Vadim S.
55 rdf:type schema:Person
56 Nd7ee1bfd473e46ab9b29a697509b8628 schema:name doi
57 schema:value 10.1007/s12217-019-9684-3
58 rdf:type schema:PropertyValue
59 Nf21da8db92a440ccb9ee691c55dc1fa1 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
65 schema:name Interdisciplinary Engineering
66 rdf:type schema:DefinedTerm
67 sg:journal.1026232 schema:issn 0938-0108
68 1875-0494
69 schema:name Microgravity Science and Technology
70 rdf:type schema:Periodical
71 sg:pub.10.1007/bf02945972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013485186
72 https://doi.org/10.1007/bf02945972
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/s12217-011-9293-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048308588
75 https://doi.org/10.1007/s12217-011-9293-2
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.applthermaleng.2009.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018617440
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.applthermaleng.2013.09.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030986879
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.applthermaleng.2017.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083699143
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.enconman.2018.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110762945
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043581592
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005407527
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ijthermalsci.2015.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005540250
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/cbo9780511803260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098677710
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1115/1.1409266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062069480
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1115/1.4003759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062144102
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1142/9789813234406_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104174386
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.462531.7 schema:alternateName Service de Physique de l'Etat Condensé
100 schema:name Service de Physique de l’Etat Condensé, CEA, CNRS, Université Paris–Saclay, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...