Research on Heat Transfer Performance of the Open-Loop Micro Pulsating Heat Pipe with Self-Rewetting Fluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-28

AUTHORS

Koji Fumoto, Misaki Sasa, Takahiro Okabe, Raffaele Savino, Takao Inamura, Minori Shirota

ABSTRACT

As technology becomes increasingly miniaturized, extremely localized heat dissipation leads to the challenge of how to keep these devices from overheating. A pulsating heat pipe (PHP) is an excellent cooling device based on the phase change of a working fluid. Experiments are performed to investigate the thermal performances of a Micro Pulsating Heat Pipe (MPHP) using different working fluids. The MPHP consists of 20 parallel channels made of a copper capillary tube with an internal diameter of 0.8 mm. The MPHP is filled with ethanol, deionized water and an aqueous solution of 1-butanol as working fluids, with different filling ratios (FRs) in the range 40–70 vol.%. The 1-butanol aqueous solution is known as a self-rewetting fluid, i.e. a dilute aqueous solution of alcohols with a number of carbon atoms higher than four (such as 1-butanol and pentanol). The surface tension of self-rewetting fluids decreases gradually with an increase in temperature, reaching a minimum around 60 °C, and subsequently increases gradually at higher temperatures. Therefore, at relatively high temperature self-rewetting fluids flow towards the regions at higher temperature due to the Marangoni effect. This flow should improve the boiling phenomenon, which is very important in the heat transfer mechanism of the MPHP. The experimental results indicate that, in the case of self-rewetting fluid, the stable oscillating motion in the MPHP arises at the heat load regime lower than that with water. In addition, the effective thermal conductivity of the MPHP with the highest concentration of self-rewetting fluid is higher than that with other fluids in the high heat load regime. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9683-4

DOI

http://dx.doi.org/10.1007/s12217-019-9683-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112462676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aoyama Gakuin University", 
          "id": "https://www.grid.ac/institutes/grid.252311.6", 
          "name": [
            "Department of Mechanical Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, 252-5258, Sagamihara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fumoto", 
        "givenName": "Koji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hirosaki University", 
          "id": "https://www.grid.ac/institutes/grid.257016.7", 
          "name": [
            "Department of Intelligent and Machines, Hirosaki University, 3 Bunkyo-cho, 036-8561, Hirosaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasa", 
        "givenName": "Misaki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hirosaki University", 
          "id": "https://www.grid.ac/institutes/grid.257016.7", 
          "name": [
            "Department of Intelligent and Machines, Hirosaki University, 3 Bunkyo-cho, 036-8561, Hirosaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okabe", 
        "givenName": "Takahiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Industrial Engineering, University of Naples FedericoII, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savino", 
        "givenName": "Raffaele", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hirosaki University", 
          "id": "https://www.grid.ac/institutes/grid.257016.7", 
          "name": [
            "Department of Intelligent and Machines, Hirosaki University, 3 Bunkyo-cho, 036-8561, Hirosaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inamura", 
        "givenName": "Takao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hirosaki University", 
          "id": "https://www.grid.ac/institutes/grid.257016.7", 
          "name": [
            "Department of Intelligent and Machines, Hirosaki University, 3 Bunkyo-cho, 036-8561, Hirosaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shirota", 
        "givenName": "Minori", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02945966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005081774", 
          "https://doi.org/10.1007/bf02945966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02945966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005081774", 
          "https://doi.org/10.1007/bf02945966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008665199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012124060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012207610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02945972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485186", 
          "https://doi.org/10.1007/bf02945972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02945972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485186", 
          "https://doi.org/10.1007/bf02945972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014196417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.12.350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021036020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021378372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044151939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-011-9293-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048308588", 
          "https://doi.org/10.1007/s12217-011-9293-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511303", 
          "https://doi.org/10.1007/bf02915757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511303", 
          "https://doi.org/10.1007/bf02915757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2009.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/heatpipescietech.2015013430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068133933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-017-1976-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083911194", 
          "https://doi.org/10.1007/s00231-017-1976-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-017-1976-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083911194", 
          "https://doi.org/10.1007/s00231-017-1976-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092547718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092956816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.05.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104282696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105569162"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-28", 
    "datePublishedReg": "2019-02-28", 
    "description": "As technology becomes increasingly miniaturized, extremely localized heat dissipation leads to the challenge of how to keep these devices from overheating. A pulsating heat pipe (PHP) is an excellent cooling device based on the phase change of a working fluid. Experiments are performed to investigate the thermal performances of a Micro Pulsating Heat Pipe (MPHP) using different working fluids. The MPHP consists of 20 parallel channels made of a copper capillary tube with an internal diameter of 0.8 mm. The MPHP is filled with ethanol, deionized water and an aqueous solution of 1-butanol as working fluids, with different filling ratios (FRs) in the range 40\u201370 vol.%. The 1-butanol aqueous solution is known as a self-rewetting fluid, i.e. a dilute aqueous solution of alcohols with a number of carbon atoms higher than four (such as 1-butanol and pentanol). The surface tension of self-rewetting fluids decreases gradually with an increase in temperature, reaching a minimum around 60 \u00b0C, and subsequently increases gradually at higher temperatures. Therefore, at relatively high temperature self-rewetting fluids flow towards the regions at higher temperature due to the Marangoni effect. This flow should improve the boiling phenomenon, which is very important in the heat transfer mechanism of the MPHP. The experimental results indicate that, in the case of self-rewetting fluid, the stable oscillating motion in the MPHP arises at the heat load regime lower than that with water. In addition, the effective thermal conductivity of the MPHP with the highest concentration of self-rewetting fluid is higher than that with other fluids in the high heat load regime.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9683-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Research on Heat Transfer Performance of the Open-Loop Micro Pulsating Heat Pipe with Self-Rewetting Fluids", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a4825a006a676c2efabb799e0298b71cb836fd93460267a07420a6522c8c45da"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9683-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112462676"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9683-4", 
      "https://app.dimensions.ai/details/publication/pub.1112462676"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113647_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9683-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9683-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9683-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9683-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9683-4'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      42 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9683-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N972574846145454c8bbaf70daf62664a
4 schema:citation sg:pub.10.1007/bf02915757
5 sg:pub.10.1007/bf02945966
6 sg:pub.10.1007/bf02945972
7 sg:pub.10.1007/s00231-017-1976-9
8 sg:pub.10.1007/s12217-011-9293-2
9 https://doi.org/10.1016/j.applthermaleng.2016.09.017
10 https://doi.org/10.1016/j.applthermaleng.2017.11.009
11 https://doi.org/10.1016/j.applthermaleng.2018.05.121
12 https://doi.org/10.1016/j.ijheatfluidflow.2009.01.009
13 https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.024
14 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.031
15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.028
16 https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.034
17 https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.064
18 https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.075
19 https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.092
20 https://doi.org/10.1016/j.rser.2015.12.350
21 https://doi.org/10.1615/heatpipescietech.2015013430
22 schema:datePublished 2019-02-28
23 schema:datePublishedReg 2019-02-28
24 schema:description As technology becomes increasingly miniaturized, extremely localized heat dissipation leads to the challenge of how to keep these devices from overheating. A pulsating heat pipe (PHP) is an excellent cooling device based on the phase change of a working fluid. Experiments are performed to investigate the thermal performances of a Micro Pulsating Heat Pipe (MPHP) using different working fluids. The MPHP consists of 20 parallel channels made of a copper capillary tube with an internal diameter of 0.8 mm. The MPHP is filled with ethanol, deionized water and an aqueous solution of 1-butanol as working fluids, with different filling ratios (FRs) in the range 40–70 vol.%. The 1-butanol aqueous solution is known as a self-rewetting fluid, i.e. a dilute aqueous solution of alcohols with a number of carbon atoms higher than four (such as 1-butanol and pentanol). The surface tension of self-rewetting fluids decreases gradually with an increase in temperature, reaching a minimum around 60 °C, and subsequently increases gradually at higher temperatures. Therefore, at relatively high temperature self-rewetting fluids flow towards the regions at higher temperature due to the Marangoni effect. This flow should improve the boiling phenomenon, which is very important in the heat transfer mechanism of the MPHP. The experimental results indicate that, in the case of self-rewetting fluid, the stable oscillating motion in the MPHP arises at the heat load regime lower than that with water. In addition, the effective thermal conductivity of the MPHP with the highest concentration of self-rewetting fluid is higher than that with other fluids in the high heat load regime.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1026232
29 schema:name Research on Heat Transfer Performance of the Open-Loop Micro Pulsating Heat Pipe with Self-Rewetting Fluids
30 schema:pagination 1-8
31 schema:productId N049eb3880abd4a46b0129fa3af950468
32 N45b4735e0a3948d88d3717759b80beaf
33 N4e3791afe35245f999512c6cc7287a90
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112462676
35 https://doi.org/10.1007/s12217-019-9683-4
36 schema:sdDatePublished 2019-04-11T10:31
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ncc4cc56391ec4a2e8ebe8e7235c44c99
39 schema:url https://link.springer.com/10.1007%2Fs12217-019-9683-4
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N049eb3880abd4a46b0129fa3af950468 schema:name readcube_id
44 schema:value a4825a006a676c2efabb799e0298b71cb836fd93460267a07420a6522c8c45da
45 rdf:type schema:PropertyValue
46 N18512ab9d0ba4ce0a6a1f205464f30ff schema:name Department of Industrial Engineering, University of Naples FedericoII, Naples, Italy
47 rdf:type schema:Organization
48 N3d66342688524975a9bf1230dff05799 rdf:first Nbdfa49f2aae34faf803e09ba2345bea1
49 rdf:rest Ncb9967d6ba644f5cada37b08faa000a1
50 N41a0a721da564b4a90315e556665df85 rdf:first Nfc03fe1b2a5f46498fd76a4fee31404b
51 rdf:rest Ne19516ff740d4af9921f44f41817c96d
52 N45b4735e0a3948d88d3717759b80beaf schema:name dimensions_id
53 schema:value pub.1112462676
54 rdf:type schema:PropertyValue
55 N4e3791afe35245f999512c6cc7287a90 schema:name doi
56 schema:value 10.1007/s12217-019-9683-4
57 rdf:type schema:PropertyValue
58 N4fcae386c4e44bf5bb147fdeeffc342b schema:affiliation N18512ab9d0ba4ce0a6a1f205464f30ff
59 schema:familyName Savino
60 schema:givenName Raffaele
61 rdf:type schema:Person
62 N723afda59c8942918f5fdf50ee33c8ed rdf:first Naaf69457bf664bee8482dca335931566
63 rdf:rest N3d66342688524975a9bf1230dff05799
64 N972574846145454c8bbaf70daf62664a rdf:first Nd7081c9049c44ffc9502afb6bf8f1247
65 rdf:rest N723afda59c8942918f5fdf50ee33c8ed
66 Naaf69457bf664bee8482dca335931566 schema:affiliation https://www.grid.ac/institutes/grid.257016.7
67 schema:familyName Sasa
68 schema:givenName Misaki
69 rdf:type schema:Person
70 Nab7e929fb9e846c68e10db523e3e21ee schema:affiliation https://www.grid.ac/institutes/grid.257016.7
71 schema:familyName Shirota
72 schema:givenName Minori
73 rdf:type schema:Person
74 Nbdfa49f2aae34faf803e09ba2345bea1 schema:affiliation https://www.grid.ac/institutes/grid.257016.7
75 schema:familyName Okabe
76 schema:givenName Takahiro
77 rdf:type schema:Person
78 Ncb9967d6ba644f5cada37b08faa000a1 rdf:first N4fcae386c4e44bf5bb147fdeeffc342b
79 rdf:rest N41a0a721da564b4a90315e556665df85
80 Ncc4cc56391ec4a2e8ebe8e7235c44c99 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nd7081c9049c44ffc9502afb6bf8f1247 schema:affiliation https://www.grid.ac/institutes/grid.252311.6
83 schema:familyName Fumoto
84 schema:givenName Koji
85 rdf:type schema:Person
86 Ne19516ff740d4af9921f44f41817c96d rdf:first Nab7e929fb9e846c68e10db523e3e21ee
87 rdf:rest rdf:nil
88 Nfc03fe1b2a5f46498fd76a4fee31404b schema:affiliation https://www.grid.ac/institutes/grid.257016.7
89 schema:familyName Inamura
90 schema:givenName Takao
91 rdf:type schema:Person
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
96 schema:name Interdisciplinary Engineering
97 rdf:type schema:DefinedTerm
98 sg:journal.1026232 schema:issn 0938-0108
99 1875-0494
100 schema:name Microgravity Science and Technology
101 rdf:type schema:Periodical
102 sg:pub.10.1007/bf02915757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049511303
103 https://doi.org/10.1007/bf02915757
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02945966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081774
106 https://doi.org/10.1007/bf02945966
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02945972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013485186
109 https://doi.org/10.1007/bf02945972
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00231-017-1976-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083911194
112 https://doi.org/10.1007/s00231-017-1976-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12217-011-9293-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048308588
115 https://doi.org/10.1007/s12217-011-9293-2
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.applthermaleng.2016.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012124060
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.applthermaleng.2017.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092956816
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.applthermaleng.2018.05.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104282696
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijheatfluidflow.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566507
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021378372
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014196417
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008665199
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012207610
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044151939
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092547718
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105569162
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.rser.2015.12.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021036020
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1615/heatpipescietech.2015013430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068133933
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.252311.6 schema:alternateName Aoyama Gakuin University
144 schema:name Department of Mechanical Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, 252-5258, Sagamihara, Japan
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.257016.7 schema:alternateName Hirosaki University
147 schema:name Department of Intelligent and Machines, Hirosaki University, 3 Bunkyo-cho, 036-8561, Hirosaki, Japan
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...