Numerical Study on Bubble Motion in Pore Structure under Microgravity Using the Lattice Boltzmann Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-22

AUTHORS

Juan Shi, Qiang Ma, Zhenqian Chen

ABSTRACT

This paper reports on a study of bubble motion in a regularly spaced pore structure under microgravity using the lattice Boltzmann method (LBM). Initially, a single bubble’s motion is derived; then the simulation is extended for two-bubble dynamics. By considering a gas-liquid two-phase flow, the interaction force (namely the fluid-fluid cohesive force and fluid-solid adhesive force) is derived using the Shan-Chen model with multicomponent single relaxation. This determines the interaction forces governing a single bubble’s dynamics in the porous structure. Then the primary parameters that influence bubble motion are studied, such as the bubble’s diameter, distance between adjacent cells, arrangement between cells, and the effects of flow-field characteristics on single-bubble motion. The simulation developed for single-bubble motion provides the basis for studying a two-bubble system’s motion trajectory and coalescence behavior. By employing the aforementioned analysis, the proposed approach optimizes porous media’s structural parameters under microgravity, resulting in increased bubble movement speed and an enhanced two-phase flow in porous media. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9681-6

DOI

http://dx.doi.org/10.1007/s12217-019-9681-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112305706


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Energy and Environment, Southeast University, 210096, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Juan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Energy and Environment, Southeast University, 210096, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Energy and Environment, Southeast University, 210096, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhenqian", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12217-008-9010-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001686837", 
          "https://doi.org/10.1007/s12217-008-9010-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.11.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002958670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003877609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006659653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2009.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007280387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008972936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.6710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008989552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01049965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009461448", 
          "https://doi.org/10.1007/bf01049965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786440808635681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011192743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.23.010191.001313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011325244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011918642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011918642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011918642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011918642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9211-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013771022", 
          "https://doi.org/10.1007/s12217-010-9211-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9211-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013771022", 
          "https://doi.org/10.1007/s12217-010-9211-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-011-9274-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021137388", 
          "https://doi.org/10.1007/s12217-011-9274-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022537284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2013.836025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026276905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028502716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003wr002120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028555265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(99)00199-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031189495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b72010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032116702", 
          "https://doi.org/10.1007/b72010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b72010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032116702", 
          "https://doi.org/10.1007/b72010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2016.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036336625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2009.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038636511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2013.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040586857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-012-9315-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040788345", 
          "https://doi.org/10.1007/s12217-012-9315-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2011.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043012145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2013.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043945462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9490-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046119242", 
          "https://doi.org/10.1007/s12217-016-9490-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9495-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051278938", 
          "https://doi.org/10.1007/s12217-016-9495-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2011.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054001833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2011.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054001833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-8686(99)00013-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054571241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.3237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.3237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.026705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.026705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.026705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.066701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.066701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/17/6/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101624778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101624778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-22", 
    "datePublishedReg": "2019-02-22", 
    "description": "This paper reports on a study of bubble motion in a regularly spaced pore structure under microgravity using the lattice Boltzmann method (LBM). Initially, a single bubble\u2019s motion is derived; then the simulation is extended for two-bubble dynamics. By considering a gas-liquid two-phase flow, the interaction force (namely the fluid-fluid cohesive force and fluid-solid adhesive force) is derived using the Shan-Chen model with multicomponent single relaxation. This determines the interaction forces governing a single bubble\u2019s dynamics in the porous structure. Then the primary parameters that influence bubble motion are studied, such as the bubble\u2019s diameter, distance between adjacent cells, arrangement between cells, and the effects of flow-field characteristics on single-bubble motion. The simulation developed for single-bubble motion provides the basis for studying a two-bubble system\u2019s motion trajectory and coalescence behavior. By employing the aforementioned analysis, the proposed approach optimizes porous media\u2019s structural parameters under microgravity, resulting in increased bubble movement speed and an enhanced two-phase flow in porous media.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9681-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Numerical Study on Bubble Motion in Pore Structure under Microgravity Using the Lattice Boltzmann Method", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1000949fa1d79103ab462cd62111768474091669bca43e44cc97cb2b668b3c3f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9681-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112305706"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9681-6", 
      "https://app.dimensions.ai/details/publication/pub.1112305706"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99841_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9681-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9681-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9681-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9681-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9681-6'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      62 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9681-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N642062f0a7da46449dc4fd31083c7763
4 schema:citation sg:pub.10.1007/b72010
5 sg:pub.10.1007/bf01049965
6 sg:pub.10.1007/s12217-008-9010-y
7 sg:pub.10.1007/s12217-010-9211-z
8 sg:pub.10.1007/s12217-011-9274-5
9 sg:pub.10.1007/s12217-012-9315-8
10 sg:pub.10.1007/s12217-016-9490-0
11 sg:pub.10.1007/s12217-016-9495-8
12 https://doi.org/10.1016/j.applthermaleng.2016.11.137
13 https://doi.org/10.1016/j.compfluid.2009.12.005
14 https://doi.org/10.1016/j.compfluid.2011.09.013
15 https://doi.org/10.1016/j.compfluid.2013.10.009
16 https://doi.org/10.1016/j.ijheatfluidflow.2013.01.020
17 https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.037
18 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058
19 https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032
20 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.014
21 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.136
22 https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.079
23 https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.032
24 https://doi.org/10.1016/j.ijmultiphaseflow.2009.09.001
25 https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.014
26 https://doi.org/10.1016/j.ijmultiphaseflow.2016.01.004
27 https://doi.org/10.1016/j.pecs.2015.10.001
28 https://doi.org/10.1016/s0001-8686(99)00013-5
29 https://doi.org/10.1016/s0009-2509(99)00199-2
30 https://doi.org/10.1017/jfm.2011.268
31 https://doi.org/10.1029/2003wr002120
32 https://doi.org/10.1063/1.869307
33 https://doi.org/10.1080/10407782.2013.836025
34 https://doi.org/10.1080/14786440808635681
35 https://doi.org/10.1103/physrev.94.511
36 https://doi.org/10.1103/physreve.57.3237
37 https://doi.org/10.1103/physreve.72.026705
38 https://doi.org/10.1103/physreve.76.066701
39 https://doi.org/10.1146/annurev.fl.23.010191.001313
40 https://doi.org/10.1209/0295-5075/17/6/001
41 https://doi.org/10.2514/2.6710
42 schema:datePublished 2019-02-22
43 schema:datePublishedReg 2019-02-22
44 schema:description This paper reports on a study of bubble motion in a regularly spaced pore structure under microgravity using the lattice Boltzmann method (LBM). Initially, a single bubble’s motion is derived; then the simulation is extended for two-bubble dynamics. By considering a gas-liquid two-phase flow, the interaction force (namely the fluid-fluid cohesive force and fluid-solid adhesive force) is derived using the Shan-Chen model with multicomponent single relaxation. This determines the interaction forces governing a single bubble’s dynamics in the porous structure. Then the primary parameters that influence bubble motion are studied, such as the bubble’s diameter, distance between adjacent cells, arrangement between cells, and the effects of flow-field characteristics on single-bubble motion. The simulation developed for single-bubble motion provides the basis for studying a two-bubble system’s motion trajectory and coalescence behavior. By employing the aforementioned analysis, the proposed approach optimizes porous media’s structural parameters under microgravity, resulting in increased bubble movement speed and an enhanced two-phase flow in porous media.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1026232
49 schema:name Numerical Study on Bubble Motion in Pore Structure under Microgravity Using the Lattice Boltzmann Method
50 schema:pagination 1-16
51 schema:productId N0f670aecd08a4d1189a8c0e12dbfc6b5
52 N3da1aa25fa094b88b49e343e66b37502
53 N7d8ca409218543f79502f85c11b2fa11
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305706
55 https://doi.org/10.1007/s12217-019-9681-6
56 schema:sdDatePublished 2019-04-11T09:41
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc43b4c97b8184caaad080c309f3ef63f
59 schema:url https://link.springer.com/10.1007%2Fs12217-019-9681-6
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0f670aecd08a4d1189a8c0e12dbfc6b5 schema:name readcube_id
64 schema:value 1000949fa1d79103ab462cd62111768474091669bca43e44cc97cb2b668b3c3f
65 rdf:type schema:PropertyValue
66 N374834dc10e74913acd23f2ec0e75748 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
67 schema:familyName Ma
68 schema:givenName Qiang
69 rdf:type schema:Person
70 N3da1aa25fa094b88b49e343e66b37502 schema:name doi
71 schema:value 10.1007/s12217-019-9681-6
72 rdf:type schema:PropertyValue
73 N42446039d2f64ce29bd6223e46ae6644 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
74 schema:familyName Shi
75 schema:givenName Juan
76 rdf:type schema:Person
77 N642062f0a7da46449dc4fd31083c7763 rdf:first N42446039d2f64ce29bd6223e46ae6644
78 rdf:rest N76153a3c3e2a40c0939a7c8d96f9515a
79 N76153a3c3e2a40c0939a7c8d96f9515a rdf:first N374834dc10e74913acd23f2ec0e75748
80 rdf:rest Ne779fb3057de4a03917eeeae5b110d6d
81 N7ccb420d33b14c3e9f1acf38760223f4 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
82 schema:familyName Chen
83 schema:givenName Zhenqian
84 rdf:type schema:Person
85 N7d8ca409218543f79502f85c11b2fa11 schema:name dimensions_id
86 schema:value pub.1112305706
87 rdf:type schema:PropertyValue
88 Nc43b4c97b8184caaad080c309f3ef63f schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Ne779fb3057de4a03917eeeae5b110d6d rdf:first N7ccb420d33b14c3e9f1acf38760223f4
91 rdf:rest rdf:nil
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Chemistry (incl. Structural)
97 rdf:type schema:DefinedTerm
98 sg:journal.1026232 schema:issn 0938-0108
99 1875-0494
100 schema:name Microgravity Science and Technology
101 rdf:type schema:Periodical
102 sg:pub.10.1007/b72010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032116702
103 https://doi.org/10.1007/b72010
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01049965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461448
106 https://doi.org/10.1007/bf01049965
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s12217-008-9010-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001686837
109 https://doi.org/10.1007/s12217-008-9010-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12217-010-9211-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013771022
112 https://doi.org/10.1007/s12217-010-9211-z
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12217-011-9274-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021137388
115 https://doi.org/10.1007/s12217-011-9274-5
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12217-012-9315-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040788345
118 https://doi.org/10.1007/s12217-012-9315-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12217-016-9490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046119242
121 https://doi.org/10.1007/s12217-016-9490-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12217-016-9495-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051278938
124 https://doi.org/10.1007/s12217-016-9495-8
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.applthermaleng.2016.11.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958670
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.compfluid.2009.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007280387
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.compfluid.2011.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043012145
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.compfluid.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043945462
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ijheatfluidflow.2013.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040586857
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041597304
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008972936
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006659653
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740727
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022537284
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003877609
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101624778
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ijmultiphaseflow.2009.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038636511
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028502716
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijmultiphaseflow.2016.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036336625
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.pecs.2015.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011918642
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0001-8686(99)00013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054571241
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0009-2509(99)00199-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031189495
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1017/jfm.2011.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054001833
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1029/2003wr002120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028555265
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.869307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007260692
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1080/10407782.2013.836025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026276905
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/14786440808635681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011192743
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.57.3237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722089
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.72.026705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733419
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.76.066701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736821
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1146/annurev.fl.23.010191.001313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011325244
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1209/0295-5075/17/6/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228747
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2514/2.6710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008989552
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
187 schema:name School of Energy and Environment, Southeast University, 210096, Nanjing, China
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...