Surface Heat Dissipation Dependence of Thermocapillary Convection of Moderate Prandtl Number Fluid in an Annular Pool View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-19

AUTHORS

Li Zhang, You-Rong Li, Chun-Mei Wu, Jia-Jia Yu

ABSTRACT

In order to understand surface heat dissipation dependence of thermocapillary convection for moderate Prandtl number fluid in a deep annular pool, a series of three-dimensional numerical simulations have been carried out by using the finite volume method. The radius ratio and the aspect ratio of an annular pool are fixed at 0.5 and 1.0, respectively. The working fluid is 0.65cSt silicone oil with Prandtl number of 6.7. Surface heat dissipation Biot (Bi) number is varied from 0 to 50. Results indicate that with the increase of Biot number, the radial temperature gradient near the inner cylindrical wall decreases, and near the outer cylindrical wall it increases, so the flow is enhanced. When 0 < Bi < 10, with the increase of Marangoni number, the axisymmetric steady flow first transits to the standing wave, and then to the azimuthal waves. The standing wave should be attributed to Marangoni-Bénard instability. However, the azimuthal waves should be corresponded to hydraulic instability, which is mainly driven by the azimuthal motion of temperature fluctuation from the sudden change of flow direction near the bottom and the inner cylindrical wall. When Bi ≥ 10, when the flow destabilizes, the axisymmetric steady flow transits directly to the azimuthal waves. With the increase of Biot number, the critical Marangoni number of the flow destabilization increases. Furthermore, the fundamental frequency and the wave number of three-dimensional oscillatory flow increase gradually with the increase of Biot number. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7

DOI

http://dx.doi.org/10.1007/s12217-019-9680-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112221614


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China", 
            "Chongqing City Management College, 401331, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "You-Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chun-Mei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Jia-Jia", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001505863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003503373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2014.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685979", 
          "https://doi.org/10.1007/bf02915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685979", 
          "https://doi.org/10.1007/bf02915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0094-5765(02)00131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012055793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023291544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024804584", 
          "https://doi.org/10.1007/s12217-016-9510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024804584", 
          "https://doi.org/10.1007/s12217-016-9510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1177(01)00654-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025071124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2014.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027339021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(98)01298-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029762696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-015-9485-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069120", 
          "https://doi.org/10.1007/s12217-015-9485-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510170352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032610508", 
          "https://doi.org/10.1007/s100510170352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036281041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044109337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112083001512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053780940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211200300541x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053800059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112099007892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053923054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112003005421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053949695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112092000880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054021591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1398536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1428323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057705697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058110968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.865836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058119025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.4432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.4432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.066308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.066308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.043105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.043105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470749982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470749982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9572-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100077209", 
          "https://doi.org/10.1007/s12217-017-9572-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1101776437", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/3527603115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101776437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2018.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103657032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104597060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9638-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106060920", 
          "https://doi.org/10.1007/s12217-018-9638-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-19", 
    "datePublishedReg": "2019-02-19", 
    "description": "In order to understand surface heat dissipation dependence of thermocapillary convection for moderate Prandtl number fluid in a deep annular pool, a series of three-dimensional numerical simulations have been carried out by using the finite volume method. The radius ratio and the aspect ratio of an annular pool are fixed at 0.5 and 1.0, respectively. The working fluid is 0.65cSt silicone oil with Prandtl number of 6.7. Surface heat dissipation Biot (Bi) number is varied from 0 to 50. Results indicate that with the increase of Biot number, the radial temperature gradient near the inner cylindrical wall decreases, and near the outer cylindrical wall it increases, so the flow is enhanced. When 0 < Bi < 10, with the increase of Marangoni number, the axisymmetric steady flow first transits to the standing wave, and then to the azimuthal waves. The standing wave should be attributed to Marangoni-B\u00e9nard instability. However, the azimuthal waves should be corresponded to hydraulic instability, which is mainly driven by the azimuthal motion of temperature fluctuation from the sudden change of flow direction near the bottom and the inner cylindrical wall. When Bi \u2265 10, when the flow destabilizes, the axisymmetric steady flow transits directly to the azimuthal waves. With the increase of Biot number, the critical Marangoni number of the flow destabilization increases. Furthermore, the fundamental frequency and the wave number of three-dimensional oscillatory flow increase gradually with the increase of Biot number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9680-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Surface Heat Dissipation Dependence of Thermocapillary Convection of Moderate Prandtl Number Fluid in an Annular Pool", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "053cd2d91f246ade2f5f9de00d3ba12637b341fffbee0558f00c9ddc31535d17"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9680-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112221614"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9680-7", 
      "https://app.dimensions.ai/details/publication/pub.1112221614"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47994_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9680-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9680-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9fe9989418db4eec875f2b24a6854e90
4 schema:citation sg:pub.10.1007/bf02915787
5 sg:pub.10.1007/s100510170352
6 sg:pub.10.1007/s12217-015-9485-2
7 sg:pub.10.1007/s12217-016-9510-0
8 sg:pub.10.1007/s12217-017-9572-7
9 sg:pub.10.1007/s12217-018-9638-1
10 https://app.dimensions.ai/details/publication/pub.1101776437
11 https://doi.org/10.1002/3527603115
12 https://doi.org/10.1002/9780470749982
13 https://doi.org/10.1016/j.expthermflusci.2014.10.015
14 https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.015
15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.061
16 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.068
17 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.074
18 https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.067
19 https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.120
20 https://doi.org/10.1016/j.ijthermalsci.2014.06.036
21 https://doi.org/10.1016/j.ijthermalsci.2018.04.026
22 https://doi.org/10.1016/s0022-0248(98)01298-6
23 https://doi.org/10.1016/s0094-5765(02)00131-5
24 https://doi.org/10.1016/s0273-1177(01)00654-8
25 https://doi.org/10.1017/s002211200300541x
26 https://doi.org/10.1017/s0022112003005421
27 https://doi.org/10.1017/s0022112083001512
28 https://doi.org/10.1017/s0022112092000880
29 https://doi.org/10.1017/s0022112099007892
30 https://doi.org/10.1063/1.1398536
31 https://doi.org/10.1063/1.1428323
32 https://doi.org/10.1063/1.857763
33 https://doi.org/10.1063/1.858478
34 https://doi.org/10.1063/1.865836
35 https://doi.org/10.1063/1.869095
36 https://doi.org/10.1103/physreve.48.4432
37 https://doi.org/10.1103/physreve.67.066308
38 https://doi.org/10.1103/physreve.93.043105
39 schema:datePublished 2019-02-19
40 schema:datePublishedReg 2019-02-19
41 schema:description In order to understand surface heat dissipation dependence of thermocapillary convection for moderate Prandtl number fluid in a deep annular pool, a series of three-dimensional numerical simulations have been carried out by using the finite volume method. The radius ratio and the aspect ratio of an annular pool are fixed at 0.5 and 1.0, respectively. The working fluid is 0.65cSt silicone oil with Prandtl number of 6.7. Surface heat dissipation Biot (Bi) number is varied from 0 to 50. Results indicate that with the increase of Biot number, the radial temperature gradient near the inner cylindrical wall decreases, and near the outer cylindrical wall it increases, so the flow is enhanced. When 0 < Bi < 10, with the increase of Marangoni number, the axisymmetric steady flow first transits to the standing wave, and then to the azimuthal waves. The standing wave should be attributed to Marangoni-Bénard instability. However, the azimuthal waves should be corresponded to hydraulic instability, which is mainly driven by the azimuthal motion of temperature fluctuation from the sudden change of flow direction near the bottom and the inner cylindrical wall. When Bi ≥ 10, when the flow destabilizes, the axisymmetric steady flow transits directly to the azimuthal waves. With the increase of Biot number, the critical Marangoni number of the flow destabilization increases. Furthermore, the fundamental frequency and the wave number of three-dimensional oscillatory flow increase gradually with the increase of Biot number.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1026232
46 schema:name Surface Heat Dissipation Dependence of Thermocapillary Convection of Moderate Prandtl Number Fluid in an Annular Pool
47 schema:pagination 1-13
48 schema:productId N11375825f34c434e85923f8229216123
49 N3bbf74242c6c49958a2bf02459100c77
50 N6afbe163a6b9449182d1dbe97347633b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112221614
52 https://doi.org/10.1007/s12217-019-9680-7
53 schema:sdDatePublished 2019-04-11T09:13
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N722760187bab48b9a072f024164b344f
56 schema:url https://link.springer.com/10.1007%2Fs12217-019-9680-7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N11375825f34c434e85923f8229216123 schema:name dimensions_id
61 schema:value pub.1112221614
62 rdf:type schema:PropertyValue
63 N1a8000c9f5f04d32b487fa2b67fdd17c schema:affiliation https://www.grid.ac/institutes/grid.190737.b
64 schema:familyName Wu
65 schema:givenName Chun-Mei
66 rdf:type schema:Person
67 N3bbf74242c6c49958a2bf02459100c77 schema:name readcube_id
68 schema:value 053cd2d91f246ade2f5f9de00d3ba12637b341fffbee0558f00c9ddc31535d17
69 rdf:type schema:PropertyValue
70 N5dd8f4fde3524466ac9b6983717cfe65 rdf:first Nd864cc0e63c54ce0904e1bd676ec8222
71 rdf:rest rdf:nil
72 N6afbe163a6b9449182d1dbe97347633b schema:name doi
73 schema:value 10.1007/s12217-019-9680-7
74 rdf:type schema:PropertyValue
75 N722760187bab48b9a072f024164b344f schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N9fe9989418db4eec875f2b24a6854e90 rdf:first Nf378609fa2ad4452a94b526217fc538f
78 rdf:rest Na4c052af9ad8476585c2f35add6589a7
79 Na4c052af9ad8476585c2f35add6589a7 rdf:first Nfcdbc6d6d20a4b648b074eec1e69fc32
80 rdf:rest Nb02f78e692c14086bb0f1666fb801b42
81 Nb02f78e692c14086bb0f1666fb801b42 rdf:first N1a8000c9f5f04d32b487fa2b67fdd17c
82 rdf:rest N5dd8f4fde3524466ac9b6983717cfe65
83 Nd864cc0e63c54ce0904e1bd676ec8222 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
84 schema:familyName Yu
85 schema:givenName Jia-Jia
86 rdf:type schema:Person
87 Nf378609fa2ad4452a94b526217fc538f schema:affiliation https://www.grid.ac/institutes/grid.190737.b
88 schema:familyName Zhang
89 schema:givenName Li
90 rdf:type schema:Person
91 Nfcdbc6d6d20a4b648b074eec1e69fc32 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
92 schema:familyName Li
93 schema:givenName You-Rong
94 rdf:type schema:Person
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
99 schema:name Interdisciplinary Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1026232 schema:issn 0938-0108
102 1875-0494
103 schema:name Microgravity Science and Technology
104 rdf:type schema:Periodical
105 sg:pub.10.1007/bf02915787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010685979
106 https://doi.org/10.1007/bf02915787
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s100510170352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032610508
109 https://doi.org/10.1007/s100510170352
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12217-015-9485-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031069120
112 https://doi.org/10.1007/s12217-015-9485-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12217-016-9510-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024804584
115 https://doi.org/10.1007/s12217-016-9510-0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12217-017-9572-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100077209
118 https://doi.org/10.1007/s12217-017-9572-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12217-018-9638-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106060920
121 https://doi.org/10.1007/s12217-018-9638-1
122 rdf:type schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1101776437 schema:CreativeWork
124 https://doi.org/10.1002/3527603115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101776437
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/9780470749982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662581
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.expthermflusci.2014.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005380016
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001505863
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291544
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109337
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003503373
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036281041
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104597060
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijthermalsci.2014.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027339021
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijthermalsci.2018.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103657032
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0022-0248(98)01298-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029762696
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0094-5765(02)00131-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012055793
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0273-1177(01)00654-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025071124
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1017/s002211200300541x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053800059
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/s0022112003005421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053949695
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1017/s0022112083001512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053780940
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1017/s0022112092000880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054021591
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1017/s0022112099007892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053923054
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.1398536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702731
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.1428323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705697
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.857763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058110968
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.858478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111683
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.865836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058119025
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.869095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121261
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.48.4432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715943
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.67.066308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730231
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.93.043105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749523
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.190737.b schema:alternateName Chongqing University
181 schema:name Chongqing City Management College, 401331, Chongqing, China
182 Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...