Surface Heat Dissipation Dependence of Thermocapillary Convection of Moderate Prandtl Number Fluid in an Annular Pool View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-19

AUTHORS

Li Zhang, You-Rong Li, Chun-Mei Wu, Jia-Jia Yu

ABSTRACT

In order to understand surface heat dissipation dependence of thermocapillary convection for moderate Prandtl number fluid in a deep annular pool, a series of three-dimensional numerical simulations have been carried out by using the finite volume method. The radius ratio and the aspect ratio of an annular pool are fixed at 0.5 and 1.0, respectively. The working fluid is 0.65cSt silicone oil with Prandtl number of 6.7. Surface heat dissipation Biot (Bi) number is varied from 0 to 50. Results indicate that with the increase of Biot number, the radial temperature gradient near the inner cylindrical wall decreases, and near the outer cylindrical wall it increases, so the flow is enhanced. When 0 < Bi < 10, with the increase of Marangoni number, the axisymmetric steady flow first transits to the standing wave, and then to the azimuthal waves. The standing wave should be attributed to Marangoni-Bénard instability. However, the azimuthal waves should be corresponded to hydraulic instability, which is mainly driven by the azimuthal motion of temperature fluctuation from the sudden change of flow direction near the bottom and the inner cylindrical wall. When Bi ≥ 10, when the flow destabilizes, the axisymmetric steady flow transits directly to the azimuthal waves. With the increase of Biot number, the critical Marangoni number of the flow destabilization increases. Furthermore, the fundamental frequency and the wave number of three-dimensional oscillatory flow increase gradually with the increase of Biot number. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7

DOI

http://dx.doi.org/10.1007/s12217-019-9680-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112221614


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China", 
            "Chongqing City Management College, 401331, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "You-Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chun-Mei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing University", 
          "id": "https://www.grid.ac/institutes/grid.190737.b", 
          "name": [
            "Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Jia-Jia", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001505863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003503373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2014.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685979", 
          "https://doi.org/10.1007/bf02915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685979", 
          "https://doi.org/10.1007/bf02915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0094-5765(02)00131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012055793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023291544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024804584", 
          "https://doi.org/10.1007/s12217-016-9510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024804584", 
          "https://doi.org/10.1007/s12217-016-9510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1177(01)00654-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025071124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2014.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027339021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(98)01298-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029762696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-015-9485-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069120", 
          "https://doi.org/10.1007/s12217-015-9485-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510170352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032610508", 
          "https://doi.org/10.1007/s100510170352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036281041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044109337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112083001512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053780940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211200300541x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053800059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112099007892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053923054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112003005421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053949695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112092000880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054021591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1398536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1428323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057705697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058110968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.865836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058119025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.4432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.4432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.066308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.066308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.043105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.043105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470749982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470749982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-017-9572-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100077209", 
          "https://doi.org/10.1007/s12217-017-9572-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1101776437", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/3527603115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101776437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2018.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103657032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104597060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9638-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106060920", 
          "https://doi.org/10.1007/s12217-018-9638-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-19", 
    "datePublishedReg": "2019-02-19", 
    "description": "In order to understand surface heat dissipation dependence of thermocapillary convection for moderate Prandtl number fluid in a deep annular pool, a series of three-dimensional numerical simulations have been carried out by using the finite volume method. The radius ratio and the aspect ratio of an annular pool are fixed at 0.5 and 1.0, respectively. The working fluid is 0.65cSt silicone oil with Prandtl number of 6.7. Surface heat dissipation Biot (Bi) number is varied from 0 to 50. Results indicate that with the increase of Biot number, the radial temperature gradient near the inner cylindrical wall decreases, and near the outer cylindrical wall it increases, so the flow is enhanced. When 0 < Bi < 10, with the increase of Marangoni number, the axisymmetric steady flow first transits to the standing wave, and then to the azimuthal waves. The standing wave should be attributed to Marangoni-B\u00e9nard instability. However, the azimuthal waves should be corresponded to hydraulic instability, which is mainly driven by the azimuthal motion of temperature fluctuation from the sudden change of flow direction near the bottom and the inner cylindrical wall. When Bi \u2265 10, when the flow destabilizes, the axisymmetric steady flow transits directly to the azimuthal waves. With the increase of Biot number, the critical Marangoni number of the flow destabilization increases. Furthermore, the fundamental frequency and the wave number of three-dimensional oscillatory flow increase gradually with the increase of Biot number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-019-9680-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Surface Heat Dissipation Dependence of Thermocapillary Convection of Moderate Prandtl Number Fluid in an Annular Pool", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "053cd2d91f246ade2f5f9de00d3ba12637b341fffbee0558f00c9ddc31535d17"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-019-9680-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112221614"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-019-9680-7", 
      "https://app.dimensions.ai/details/publication/pub.1112221614"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47994_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-019-9680-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-019-9680-7'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-019-9680-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nf26d1c8571184340b74e3c8868201b28
4 schema:citation sg:pub.10.1007/bf02915787
5 sg:pub.10.1007/s100510170352
6 sg:pub.10.1007/s12217-015-9485-2
7 sg:pub.10.1007/s12217-016-9510-0
8 sg:pub.10.1007/s12217-017-9572-7
9 sg:pub.10.1007/s12217-018-9638-1
10 https://app.dimensions.ai/details/publication/pub.1101776437
11 https://doi.org/10.1002/3527603115
12 https://doi.org/10.1002/9780470749982
13 https://doi.org/10.1016/j.expthermflusci.2014.10.015
14 https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.015
15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.061
16 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.068
17 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.074
18 https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.067
19 https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.120
20 https://doi.org/10.1016/j.ijthermalsci.2014.06.036
21 https://doi.org/10.1016/j.ijthermalsci.2018.04.026
22 https://doi.org/10.1016/s0022-0248(98)01298-6
23 https://doi.org/10.1016/s0094-5765(02)00131-5
24 https://doi.org/10.1016/s0273-1177(01)00654-8
25 https://doi.org/10.1017/s002211200300541x
26 https://doi.org/10.1017/s0022112003005421
27 https://doi.org/10.1017/s0022112083001512
28 https://doi.org/10.1017/s0022112092000880
29 https://doi.org/10.1017/s0022112099007892
30 https://doi.org/10.1063/1.1398536
31 https://doi.org/10.1063/1.1428323
32 https://doi.org/10.1063/1.857763
33 https://doi.org/10.1063/1.858478
34 https://doi.org/10.1063/1.865836
35 https://doi.org/10.1063/1.869095
36 https://doi.org/10.1103/physreve.48.4432
37 https://doi.org/10.1103/physreve.67.066308
38 https://doi.org/10.1103/physreve.93.043105
39 schema:datePublished 2019-02-19
40 schema:datePublishedReg 2019-02-19
41 schema:description In order to understand surface heat dissipation dependence of thermocapillary convection for moderate Prandtl number fluid in a deep annular pool, a series of three-dimensional numerical simulations have been carried out by using the finite volume method. The radius ratio and the aspect ratio of an annular pool are fixed at 0.5 and 1.0, respectively. The working fluid is 0.65cSt silicone oil with Prandtl number of 6.7. Surface heat dissipation Biot (Bi) number is varied from 0 to 50. Results indicate that with the increase of Biot number, the radial temperature gradient near the inner cylindrical wall decreases, and near the outer cylindrical wall it increases, so the flow is enhanced. When 0 < Bi < 10, with the increase of Marangoni number, the axisymmetric steady flow first transits to the standing wave, and then to the azimuthal waves. The standing wave should be attributed to Marangoni-Bénard instability. However, the azimuthal waves should be corresponded to hydraulic instability, which is mainly driven by the azimuthal motion of temperature fluctuation from the sudden change of flow direction near the bottom and the inner cylindrical wall. When Bi ≥ 10, when the flow destabilizes, the axisymmetric steady flow transits directly to the azimuthal waves. With the increase of Biot number, the critical Marangoni number of the flow destabilization increases. Furthermore, the fundamental frequency and the wave number of three-dimensional oscillatory flow increase gradually with the increase of Biot number.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1026232
46 schema:name Surface Heat Dissipation Dependence of Thermocapillary Convection of Moderate Prandtl Number Fluid in an Annular Pool
47 schema:pagination 1-13
48 schema:productId N4fb6aac6a90d43468cafacc7e2b5fd0d
49 N5425b42ce39f4b0d888761153f0a7c45
50 N56073262125640839451aa65ed69e1a6
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112221614
52 https://doi.org/10.1007/s12217-019-9680-7
53 schema:sdDatePublished 2019-04-11T09:13
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N21c1e60512bb4c84978d57c86a27f5c0
56 schema:url https://link.springer.com/10.1007%2Fs12217-019-9680-7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0763753d6169480fbf8c0445c0c211f4 rdf:first Nc7114bc150f7431eae9562dc3096dd70
61 rdf:rest rdf:nil
62 N11fd73f3eb294bc596471d2c8eb29419 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
63 schema:familyName Li
64 schema:givenName You-Rong
65 rdf:type schema:Person
66 N1c91e0293de443e488a2c173c93208ba rdf:first N81d6973b524041228ff3edc6c29a285b
67 rdf:rest N0763753d6169480fbf8c0445c0c211f4
68 N21c1e60512bb4c84978d57c86a27f5c0 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N4fb6aac6a90d43468cafacc7e2b5fd0d schema:name doi
71 schema:value 10.1007/s12217-019-9680-7
72 rdf:type schema:PropertyValue
73 N5425b42ce39f4b0d888761153f0a7c45 schema:name readcube_id
74 schema:value 053cd2d91f246ade2f5f9de00d3ba12637b341fffbee0558f00c9ddc31535d17
75 rdf:type schema:PropertyValue
76 N56073262125640839451aa65ed69e1a6 schema:name dimensions_id
77 schema:value pub.1112221614
78 rdf:type schema:PropertyValue
79 N5d99e7c6f9eb431cac94a8d98f7db3b0 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
80 schema:familyName Zhang
81 schema:givenName Li
82 rdf:type schema:Person
83 N81d6973b524041228ff3edc6c29a285b schema:affiliation https://www.grid.ac/institutes/grid.190737.b
84 schema:familyName Wu
85 schema:givenName Chun-Mei
86 rdf:type schema:Person
87 Nc7114bc150f7431eae9562dc3096dd70 schema:affiliation https://www.grid.ac/institutes/grid.190737.b
88 schema:familyName Yu
89 schema:givenName Jia-Jia
90 rdf:type schema:Person
91 Nc96c13f01f4a4e13bd3220ad7fd9b0fc rdf:first N11fd73f3eb294bc596471d2c8eb29419
92 rdf:rest N1c91e0293de443e488a2c173c93208ba
93 Nf26d1c8571184340b74e3c8868201b28 rdf:first N5d99e7c6f9eb431cac94a8d98f7db3b0
94 rdf:rest Nc96c13f01f4a4e13bd3220ad7fd9b0fc
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
99 schema:name Interdisciplinary Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1026232 schema:issn 0938-0108
102 1875-0494
103 schema:name Microgravity Science and Technology
104 rdf:type schema:Periodical
105 sg:pub.10.1007/bf02915787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010685979
106 https://doi.org/10.1007/bf02915787
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s100510170352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032610508
109 https://doi.org/10.1007/s100510170352
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12217-015-9485-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031069120
112 https://doi.org/10.1007/s12217-015-9485-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12217-016-9510-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024804584
115 https://doi.org/10.1007/s12217-016-9510-0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12217-017-9572-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100077209
118 https://doi.org/10.1007/s12217-017-9572-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12217-018-9638-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106060920
121 https://doi.org/10.1007/s12217-018-9638-1
122 rdf:type schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1101776437 schema:CreativeWork
124 https://doi.org/10.1002/3527603115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101776437
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/9780470749982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662581
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.expthermflusci.2014.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005380016
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001505863
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291544
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109337
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003503373
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036281041
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104597060
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijthermalsci.2014.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027339021
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijthermalsci.2018.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103657032
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0022-0248(98)01298-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029762696
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0094-5765(02)00131-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012055793
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0273-1177(01)00654-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025071124
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1017/s002211200300541x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053800059
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/s0022112003005421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053949695
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1017/s0022112083001512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053780940
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1017/s0022112092000880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054021591
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1017/s0022112099007892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053923054
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.1398536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702731
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.1428323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705697
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.857763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058110968
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.858478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111683
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.865836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058119025
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.869095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121261
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.48.4432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715943
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.67.066308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730231
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.93.043105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749523
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.190737.b schema:alternateName Chongqing University
181 schema:name Chongqing City Management College, 401331, Chongqing, China
182 Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, 400044, Chongqing, China
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...