Screen Compliance Experiments for Application of Liquid Acquisition Device in Space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Chase Camarotti, Oscar Deng, Samuel Darr, Jason Hartwig, J. N. Chung

ABSTRACT

The purpose of a liquid acquisition device (LAD) is to separate liquid and vapor phases inside a spacecraft propellant storage tank in the reduced gravity and microgravity conditions of space so that vapor-free liquid can be extracted to the transfer line. A popular type of LAD called a screen channel LAD or gallery arm, uses a fine porous screen and surface tension forces of the liquid to allow pure liquid to flow through the screen while blocking vapor penetration. To analyze, size, and optimize the design of LADs for future in-space propellant transfer systems, models and data are required for the four fundamental influential factors for LAD systems, including bubble point, flow-through-screen pressure drop, wicking rate, and screen compliance for a wide variety of screen meshes. While there is sporadic data available for three of these parameters, there is no published quantitative data for screen compliance. During the transient startup of propellant transfer, the liquid must be accelerated from rest to the steady flow demand velocity, which causes the screen to deform or comply, so compliance data is required for accurate transient LAD analyses; most design codes only consider steady state analysis. This paper presents screen compliance experiments on 14 different screens, examining the effects of fineness of mesh, open area, and screen metal type on compliance. A basic equation of state is also developed and validated against the data which can be easily integrated into any transient LAD flow code to model propellant transfer. More... »

PAGES

109-122

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-018-9671-0

DOI

http://dx.doi.org/10.1007/s12217-018-9671-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111162125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace Engineering, University of Florida, 32611-6300, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camarotti", 
        "givenName": "Chase", 
        "id": "sg:person.014214410666.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214410666.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace Engineering, University of Florida, 32611-6300, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Oscar", 
        "id": "sg:person.011451665667.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011451665667.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace Engineering, University of Florida, 32611-6300, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Darr", 
        "givenName": "Samuel", 
        "id": "sg:person.012316742161.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012316742161.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Glenn Research Center", 
          "id": "https://www.grid.ac/institutes/grid.419077.c", 
          "name": [
            "NASA Glenn Research Center, 44135, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartwig", 
        "givenName": "Jason", 
        "id": "sg:person.015231444633.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231444633.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace Engineering, University of Florida, 32611-6300, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "J. N.", 
        "id": "sg:person.015341033673.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341033673.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12217-010-9237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008701705", 
          "https://doi.org/10.1007/s12217-010-9237-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008701705", 
          "https://doi.org/10.1007/s12217-010-9237-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2011-1320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009980714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryogenics.2014.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015430179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016921239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2008-7765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019818134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2013.10.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026686334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4973671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026694677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2014.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030844257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryogenics.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031066831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryogenics.2015.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031833451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t4078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038463938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-013-9342-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039025368", 
          "https://doi.org/10.1007/s12217-013-9342-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1997-2811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040190798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-012-9315-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040788345", 
          "https://doi.org/10.1007/s12217-012-9315-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t3990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041322933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02908417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041834693", 
          "https://doi.org/10.1007/bf02908417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02908417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041834693", 
          "https://doi.org/10.1007/bf02908417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.11536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02870407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049609610", 
          "https://doi.org/10.1007/bf02870407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02870407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049609610", 
          "https://doi.org/10.1007/bf02870407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jpormedia.v17.i7.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068148629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The purpose of a liquid acquisition device (LAD) is to separate liquid and vapor phases inside a spacecraft propellant storage tank in the reduced gravity and microgravity conditions of space so that vapor-free liquid can be extracted to the transfer line. A popular type of LAD called a screen channel LAD or gallery arm, uses a fine porous screen and surface tension forces of the liquid to allow pure liquid to flow through the screen while blocking vapor penetration. To analyze, size, and optimize the design of LADs for future in-space propellant transfer systems, models and data are required for the four fundamental influential factors for LAD systems, including bubble point, flow-through-screen pressure drop, wicking rate, and screen compliance for a wide variety of screen meshes. While there is sporadic data available for three of these parameters, there is no published quantitative data for screen compliance. During the transient startup of propellant transfer, the liquid must be accelerated from rest to the steady flow demand velocity, which causes the screen to deform or comply, so compliance data is required for accurate transient LAD analyses; most design codes only consider steady state analysis. This paper presents screen compliance experiments on 14 different screens, examining the effects of fineness of mesh, open area, and screen metal type on compliance. A basic equation of state is also developed and validated against the data which can be easily integrated into any transient LAD flow code to model propellant transfer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-018-9671-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Screen Compliance Experiments for Application of Liquid Acquisition Device in Space", 
    "pagination": "109-122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "faabd02219eb4729e78bc8595b16f28077c62bfc22ece75d44584bc39f48b2d9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-018-9671-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111162125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-018-9671-0", 
      "https://app.dimensions.ai/details/publication/pub.1111162125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77544_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-018-9671-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9671-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9671-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9671-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9671-0'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-018-9671-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na6c0449b695144a19a646eb5b7ec6fd8
4 schema:citation sg:pub.10.1007/bf02870407
5 sg:pub.10.1007/bf02908417
6 sg:pub.10.1007/s12217-010-9237-2
7 sg:pub.10.1007/s12217-012-9315-8
8 sg:pub.10.1007/s12217-013-9342-0
9 https://doi.org/10.1016/j.applthermaleng.2014.02.022
10 https://doi.org/10.1016/j.cryogenics.2014.02.011
11 https://doi.org/10.1016/j.cryogenics.2014.03.005
12 https://doi.org/10.1016/j.cryogenics.2015.09.008
13 https://doi.org/10.1016/j.ijhydene.2013.10.133
14 https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.002
15 https://doi.org/10.1063/1.4973671
16 https://doi.org/10.1615/jpormedia.v17.i7.30
17 https://doi.org/10.2514/1.t3990
18 https://doi.org/10.2514/1.t4078
19 https://doi.org/10.2514/3.11536
20 https://doi.org/10.2514/6.1997-2811
21 https://doi.org/10.2514/6.2008-7765
22 https://doi.org/10.2514/6.2011-1320
23 schema:datePublished 2019-02
24 schema:datePublishedReg 2019-02-01
25 schema:description The purpose of a liquid acquisition device (LAD) is to separate liquid and vapor phases inside a spacecraft propellant storage tank in the reduced gravity and microgravity conditions of space so that vapor-free liquid can be extracted to the transfer line. A popular type of LAD called a screen channel LAD or gallery arm, uses a fine porous screen and surface tension forces of the liquid to allow pure liquid to flow through the screen while blocking vapor penetration. To analyze, size, and optimize the design of LADs for future in-space propellant transfer systems, models and data are required for the four fundamental influential factors for LAD systems, including bubble point, flow-through-screen pressure drop, wicking rate, and screen compliance for a wide variety of screen meshes. While there is sporadic data available for three of these parameters, there is no published quantitative data for screen compliance. During the transient startup of propellant transfer, the liquid must be accelerated from rest to the steady flow demand velocity, which causes the screen to deform or comply, so compliance data is required for accurate transient LAD analyses; most design codes only consider steady state analysis. This paper presents screen compliance experiments on 14 different screens, examining the effects of fineness of mesh, open area, and screen metal type on compliance. A basic equation of state is also developed and validated against the data which can be easily integrated into any transient LAD flow code to model propellant transfer.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N768ae9d7a6b54e31b459ca031475a036
30 Ncc77d23f65134cb5bf1217e39661bcda
31 sg:journal.1026232
32 schema:name Screen Compliance Experiments for Application of Liquid Acquisition Device in Space
33 schema:pagination 109-122
34 schema:productId N3a46e31d4b6d486883a299d4edc8e9b9
35 N90ceaaa3b2374e57a2b71c4433ddd1a8
36 Nbbe6337eccf84ad4b38b9fd3f4d261bd
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111162125
38 https://doi.org/10.1007/s12217-018-9671-0
39 schema:sdDatePublished 2019-04-11T10:48
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ncf5da0e786ea4366a4125a9c280569b1
42 schema:url https://link.springer.com/10.1007%2Fs12217-018-9671-0
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0c54404d7dbf4bc89c445015af21484f rdf:first sg:person.012316742161.38
47 rdf:rest N9facb368cdd24cff8f870f7a569e7707
48 N322d3e7eeacc4dd08345b0706023396b rdf:first sg:person.011451665667.88
49 rdf:rest N0c54404d7dbf4bc89c445015af21484f
50 N36bd1b8cbda443b696d7539cda93700a rdf:first sg:person.015341033673.03
51 rdf:rest rdf:nil
52 N3a46e31d4b6d486883a299d4edc8e9b9 schema:name doi
53 schema:value 10.1007/s12217-018-9671-0
54 rdf:type schema:PropertyValue
55 N768ae9d7a6b54e31b459ca031475a036 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N90ceaaa3b2374e57a2b71c4433ddd1a8 schema:name readcube_id
58 schema:value faabd02219eb4729e78bc8595b16f28077c62bfc22ece75d44584bc39f48b2d9
59 rdf:type schema:PropertyValue
60 N9facb368cdd24cff8f870f7a569e7707 rdf:first sg:person.015231444633.84
61 rdf:rest N36bd1b8cbda443b696d7539cda93700a
62 Na6c0449b695144a19a646eb5b7ec6fd8 rdf:first sg:person.014214410666.16
63 rdf:rest N322d3e7eeacc4dd08345b0706023396b
64 Nbbe6337eccf84ad4b38b9fd3f4d261bd schema:name dimensions_id
65 schema:value pub.1111162125
66 rdf:type schema:PropertyValue
67 Ncc77d23f65134cb5bf1217e39661bcda schema:volumeNumber 31
68 rdf:type schema:PublicationVolume
69 Ncf5da0e786ea4366a4125a9c280569b1 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
75 schema:name Interdisciplinary Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1026232 schema:issn 0938-0108
78 1875-0494
79 schema:name Microgravity Science and Technology
80 rdf:type schema:Periodical
81 sg:person.011451665667.88 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
82 schema:familyName Deng
83 schema:givenName Oscar
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011451665667.88
85 rdf:type schema:Person
86 sg:person.012316742161.38 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
87 schema:familyName Darr
88 schema:givenName Samuel
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012316742161.38
90 rdf:type schema:Person
91 sg:person.014214410666.16 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
92 schema:familyName Camarotti
93 schema:givenName Chase
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214410666.16
95 rdf:type schema:Person
96 sg:person.015231444633.84 schema:affiliation https://www.grid.ac/institutes/grid.419077.c
97 schema:familyName Hartwig
98 schema:givenName Jason
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231444633.84
100 rdf:type schema:Person
101 sg:person.015341033673.03 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
102 schema:familyName Chung
103 schema:givenName J. N.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341033673.03
105 rdf:type schema:Person
106 sg:pub.10.1007/bf02870407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049609610
107 https://doi.org/10.1007/bf02870407
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02908417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041834693
110 https://doi.org/10.1007/bf02908417
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12217-010-9237-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008701705
113 https://doi.org/10.1007/s12217-010-9237-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s12217-012-9315-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040788345
116 https://doi.org/10.1007/s12217-012-9315-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12217-013-9342-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039025368
119 https://doi.org/10.1007/s12217-013-9342-0
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.applthermaleng.2014.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844257
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.cryogenics.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031066831
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cryogenics.2014.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015430179
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cryogenics.2015.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031833451
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijhydene.2013.10.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026686334
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016921239
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.4973671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026694677
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1615/jpormedia.v17.i7.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068148629
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2514/1.t3990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041322933
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2514/1.t4078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038463938
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2514/3.11536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867225
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2514/6.1997-2811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040190798
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2514/6.2008-7765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019818134
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2514/6.2011-1320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009980714
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
150 schema:name Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace Engineering, University of Florida, 32611-6300, Gainesville, FL, USA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.419077.c schema:alternateName Glenn Research Center
153 schema:name NASA Glenn Research Center, 44135, Cleveland, OH, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...