Static and Dynamic Liquid-Vapor Phase Distribution in the Capillary Evaporator of a Loop Heat Pipe View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Masahito Nishikawara, Yosuke Ueda, Hideki Yanada

ABSTRACT

The liquid–vapor phase distribution and displacement in the capillary evaporator of a loop heat pipe (LHP) are key phenomena affecting the steady state and transient operating characteristics. This study intends to analyze the liquid-vapor interface behavior in the capillary evaporator that causes operational instability and enhances the heat-transfer while performing optical observation in the transparent cylindrical evaporator during the LHP operation. A quartz wick-acetone LHP system was designed and fabricated, which operated successfully with a maximum heat flux of 5.9 W/cm2. Phase displacement in various operations, such as the start-up involving nucleate boiling, capillary limit, hysteresis, and step-up of the heat load were observed. Binarized image quantitatively processed revealed dynamic characteristics on the contact surface between the wick and case. Comparison of the phase displacements during the start-up involving nucleate boiling and nucleate boiling after normal start-up showed that the equilibrium vapor phase on the contact surface between the evaporator case and wick is formed by both imbibition and drainage. On the step-up-down test of the heat load, a visual evidence of hysteresis of the evaporator heat-transfer coefficient due to the phase distribution in the wick was noticed. The simulation results showed that the residual liquid phase along the three phase contact line within the case, wick and grooves, observed by the visualization experiment, is of low temperature. Therefore, the distribution of the residual liquid can enhance the evaporator heat-transfer coefficient. This characteristic is the key aspect of optimizing the porous structure of the wick. More... »

PAGES

61-71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-018-9668-8

DOI

http://dx.doi.org/10.1007/s12217-018-9668-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110227043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Mechanical Engineering, Toyohashi University of Technology, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishikawara", 
        "givenName": "Masahito", 
        "id": "sg:person.016032706425.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016032706425.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Mechanical Engineering, Toyohashi University of Technology, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueda", 
        "givenName": "Yosuke", 
        "id": "sg:person.012232611702.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232611702.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Mechanical Engineering, Toyohashi University of Technology, 441-8580, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanada", 
        "givenName": "Hideki", 
        "id": "sg:person.012503615246.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503615246.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0017-9310(99)00212-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009954524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010586913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2011-5140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013673900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2011.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013923582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016523778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19354160705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019234854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020961805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-008-9076-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022414101", 
          "https://doi.org/10.1007/s12217-008-9076-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-008-9076-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022414101", 
          "https://doi.org/10.1007/s12217-008-9076-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022506073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(99)00206-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034440564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034734507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034734507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038128978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1385-8947(01)00283-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038559786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048070890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/heatpipescitech.v1.i2.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068133880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.02.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083906810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.03.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084059115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2018.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103196160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104240443", 
          "https://doi.org/10.1007/s12217-018-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-018-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104240443", 
          "https://doi.org/10.1007/s12217-018-9623-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The liquid\u2013vapor phase distribution and displacement in the capillary evaporator of a loop heat pipe (LHP) are key phenomena affecting the steady state and transient operating characteristics. This study intends to analyze the liquid-vapor interface behavior in the capillary evaporator that causes operational instability and enhances the heat-transfer while performing optical observation in the transparent cylindrical evaporator during the LHP operation. A quartz wick-acetone LHP system was designed and fabricated, which operated successfully with a maximum heat flux of 5.9 W/cm2. Phase displacement in various operations, such as the start-up involving nucleate boiling, capillary limit, hysteresis, and step-up of the heat load were observed. Binarized image quantitatively processed revealed dynamic characteristics on the contact surface between the wick and case. Comparison of the phase displacements during the start-up involving nucleate boiling and nucleate boiling after normal start-up showed that the equilibrium vapor phase on the contact surface between the evaporator case and wick is formed by both imbibition and drainage. On the step-up-down test of the heat load, a visual evidence of hysteresis of the evaporator heat-transfer coefficient due to the phase distribution in the wick was noticed. The simulation results showed that the residual liquid phase along the three phase contact line within the case, wick and grooves, observed by the visualization experiment, is of low temperature. Therefore, the distribution of the residual liquid can enhance the evaporator heat-transfer coefficient. This characteristic is the key aspect of optimizing the porous structure of the wick.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-018-9668-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Static and Dynamic Liquid-Vapor Phase Distribution in the Capillary Evaporator of a Loop Heat Pipe", 
    "pagination": "61-71", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e8b071b55288e5046254a7795ce2075ba9a77ee4dbe34e67256e20009b6e6e9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-018-9668-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110227043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-018-9668-8", 
      "https://app.dimensions.ai/details/publication/pub.1110227043"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77544_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-018-9668-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9668-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9668-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9668-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9668-8'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-018-9668-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ne00d72bbef9c43389c1ffa19759cf164
4 schema:citation sg:pub.10.1007/s12217-008-9076-6
5 sg:pub.10.1007/s12217-018-9623-8
6 https://doi.org/10.1002/andp.19354160705
7 https://doi.org/10.1016/j.applthermaleng.2006.08.016
8 https://doi.org/10.1016/j.applthermaleng.2011.09.025
9 https://doi.org/10.1016/j.applthermaleng.2017.02.050
10 https://doi.org/10.1016/j.applthermaleng.2017.03.113
11 https://doi.org/10.1016/j.expthermflusci.2011.10.007
12 https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.028
13 https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.029
14 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.016
15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.048
16 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.054
17 https://doi.org/10.1016/j.ijthermalsci.2018.03.023
18 https://doi.org/10.1016/s0017-9310(99)00206-9
19 https://doi.org/10.1016/s0017-9310(99)00212-4
20 https://doi.org/10.1016/s1385-8947(01)00283-2
21 https://doi.org/10.1615/heatpipescitech.v1.i2.20
22 https://doi.org/10.2514/6.2011-5140
23 schema:datePublished 2019-02
24 schema:datePublishedReg 2019-02-01
25 schema:description The liquid–vapor phase distribution and displacement in the capillary evaporator of a loop heat pipe (LHP) are key phenomena affecting the steady state and transient operating characteristics. This study intends to analyze the liquid-vapor interface behavior in the capillary evaporator that causes operational instability and enhances the heat-transfer while performing optical observation in the transparent cylindrical evaporator during the LHP operation. A quartz wick-acetone LHP system was designed and fabricated, which operated successfully with a maximum heat flux of 5.9 W/cm2. Phase displacement in various operations, such as the start-up involving nucleate boiling, capillary limit, hysteresis, and step-up of the heat load were observed. Binarized image quantitatively processed revealed dynamic characteristics on the contact surface between the wick and case. Comparison of the phase displacements during the start-up involving nucleate boiling and nucleate boiling after normal start-up showed that the equilibrium vapor phase on the contact surface between the evaporator case and wick is formed by both imbibition and drainage. On the step-up-down test of the heat load, a visual evidence of hysteresis of the evaporator heat-transfer coefficient due to the phase distribution in the wick was noticed. The simulation results showed that the residual liquid phase along the three phase contact line within the case, wick and grooves, observed by the visualization experiment, is of low temperature. Therefore, the distribution of the residual liquid can enhance the evaporator heat-transfer coefficient. This characteristic is the key aspect of optimizing the porous structure of the wick.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Nb647b2e6df5d43d8bb6c4e8ac1551995
30 Nec61cb1cc20b4b8082a246fa48d0801e
31 sg:journal.1026232
32 schema:name Static and Dynamic Liquid-Vapor Phase Distribution in the Capillary Evaporator of a Loop Heat Pipe
33 schema:pagination 61-71
34 schema:productId N2bb1a4eb1ddb4670a3e5990ae372328a
35 N51f2b8b24b3c43639351a4813835e72e
36 N72dbebf71a284a9ca4b10b4fbc894bfc
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110227043
38 https://doi.org/10.1007/s12217-018-9668-8
39 schema:sdDatePublished 2019-04-11T10:48
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd1f86e7e3a0a444285ddef67be0dbadd
42 schema:url https://link.springer.com/10.1007%2Fs12217-018-9668-8
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N097d25a1081e4bc6a70ac4f80dd02c78 rdf:first sg:person.012232611702.65
47 rdf:rest Nfafa63ef4e9c4b909db7dd671163803a
48 N2bb1a4eb1ddb4670a3e5990ae372328a schema:name dimensions_id
49 schema:value pub.1110227043
50 rdf:type schema:PropertyValue
51 N51f2b8b24b3c43639351a4813835e72e schema:name readcube_id
52 schema:value 7e8b071b55288e5046254a7795ce2075ba9a77ee4dbe34e67256e20009b6e6e9
53 rdf:type schema:PropertyValue
54 N72dbebf71a284a9ca4b10b4fbc894bfc schema:name doi
55 schema:value 10.1007/s12217-018-9668-8
56 rdf:type schema:PropertyValue
57 Nb647b2e6df5d43d8bb6c4e8ac1551995 schema:volumeNumber 31
58 rdf:type schema:PublicationVolume
59 Nd1f86e7e3a0a444285ddef67be0dbadd schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Ne00d72bbef9c43389c1ffa19759cf164 rdf:first sg:person.016032706425.70
62 rdf:rest N097d25a1081e4bc6a70ac4f80dd02c78
63 Nec61cb1cc20b4b8082a246fa48d0801e schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nfafa63ef4e9c4b909db7dd671163803a rdf:first sg:person.012503615246.09
66 rdf:rest rdf:nil
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
71 schema:name Interdisciplinary Engineering
72 rdf:type schema:DefinedTerm
73 sg:journal.1026232 schema:issn 0938-0108
74 1875-0494
75 schema:name Microgravity Science and Technology
76 rdf:type schema:Periodical
77 sg:person.012232611702.65 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
78 schema:familyName Ueda
79 schema:givenName Yosuke
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232611702.65
81 rdf:type schema:Person
82 sg:person.012503615246.09 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
83 schema:familyName Yanada
84 schema:givenName Hideki
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503615246.09
86 rdf:type schema:Person
87 sg:person.016032706425.70 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
88 schema:familyName Nishikawara
89 schema:givenName Masahito
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016032706425.70
91 rdf:type schema:Person
92 sg:pub.10.1007/s12217-008-9076-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022414101
93 https://doi.org/10.1007/s12217-008-9076-6
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s12217-018-9623-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104240443
96 https://doi.org/10.1007/s12217-018-9623-8
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/andp.19354160705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019234854
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.applthermaleng.2006.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048070890
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.applthermaleng.2011.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013923582
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.applthermaleng.2017.02.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083906810
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.applthermaleng.2017.03.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084059115
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.expthermflusci.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020961805
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038128978
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016523778
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022506073
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010586913
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034734507
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijthermalsci.2018.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103196160
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0017-9310(99)00206-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034440564
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0017-9310(99)00212-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009954524
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s1385-8947(01)00283-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038559786
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1615/heatpipescitech.v1.i2.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068133880
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2514/6.2011-5140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013673900
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.412804.b schema:alternateName Toyohashi University of Technology
133 schema:name Department of Mechanical Engineering, Toyohashi University of Technology, 441-8580, Toyohashi, Japan
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...